
UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

New kinds of tools for maintaining and sustaining software and
firmware

Sergey Bratus

UNCLASSIFIED

Images of specific products throughout this presentation are used for illustrative
purposes only. Use of these images is not meant to imply either endorsement or

vulnerability of a product or company.
Source: Robinson, September 2019

Sergey’s disclaimers

• Obligatory: Any opinions are mine alone and don’t represent any of my
employers past or present.

• Substantive:

• This is a personal perspective on other people’s amazing work. All credit
goes to them, not me.

• This is a tiny, biased sample of a great domain. Please tell me what I am
missing!

• Trivial: I am a former mathematician. I tend to see math everywhere :)

3

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the author
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

Official Disclaimer

DARPA: High Risk, High Reward Research
Mother of
All Demos

AI and Cyber ChallengeLisp
Processor

Autonomous
Vehicles

Cyber
Grand Challenge

The
Internet

Personalized Assistant
That Learns

Project MAC
(Mathematics and Computation)

Distribution Statement A: Approved for Public Release, Distribution Unlimited.

Sources: Wikipedia, Project MAC: Image
MIT and The Computer History Museum

My DARPA programs
Safe Documents: Regain trust in electronic documents by creating
tools to build machine-readable unambiguous format definitions
and secure verified parsers

Assured Micropatching: Create tools for rapid binary patching of
legacy mission-critical systems, even where the original source code or
build process aren’t available

Verified Security & Performance Enhancement of Large Legacy
Software: Create practical tools for incremental enhancement of
software systems with new verified code that is both correct-by-
construction and safely composable with the rest of the system

My DARPA programs

Hardening Development Toolchains Against Emergent Execution
Engines:  
Develop practical tools to anticipate, isolate, and mitigate emergent
behaviors throughout the software lifecycle, to improve security
outcomes in software for complex integrated systems

Enhanced SBOM for Optimized Software Sustainment:  
Develop Enhanced Software Bill of Material (eSBOM) advanced
metadata technology to enable rapid triage-and-remediation of
vulnerabilities in software at scale.

E-BOSS

7

Awesome:
• High-level programming languages
• Automating software composition (linkers)
• Large reusable code libraries

And yet:
• Source -> compiler -> linker -> unmaintainable binary
• Binaries aren’t meant to be incrementally updated

• “Tear down & rebuild the house to remodel a room”

We are still living out the 1960s software development revolution

https://en.wikipedia.org/wiki/Grace_Hopper

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Desired: Patched binary with minimal changes, successfully integrates

Challenge: Rebuilding and re-integration needs costly manual effort

Source

Binary

Rebuilt binary,
fails to integrate

Integratable
binaries

𝜟Patch

New build process
Orig

ina
l bu

ild
pro

ces
s

Manual

Original source code

Patched code

Actual binary

Build
process

8

UNCLASSIFIED

Source: Bratus, July 2019

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Desired: Patched binary with minimal changes, successfully integrates

Challenge: Rebuilding and re-integration needs costly manual effort

Source

Binary

Semantically equivalent, but
fails to situate the patch

Rebuilt binary,
fails to integrate

Integratable
binaries

𝜟Patch

Decompilation New build
processOrig

ina
l bu

ild
pro

ces
s

Manual

Source code that can
situate the patch

Manual

Original source code

Patched code

Actual binary

Build
process

9

UNCLASSIFIED

Source: Bratus, July 2019

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Vision: Micropatches with certification evidence via automation

Actual binary

Patched binary with certification evidence

Assured recompilation with
guarantees of non-interference

Patched code

Goal-driven
decompilation

Source

Binary

Original source code

Integratable
binaries

Semantically equivalent, but
fails to situate the patch

automated
automated

10

UNCLASSIFIED

Source: Bratus, July 2019

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Vision: Micropatches with certification evidence via automation

Actual binary

Patched binary with certification evidence

Assured recompilation with guarantees
of non-interference

Patched code

Source

Binary

Original source code

Integratable
binaries

Semantically equivalent, but
fails to situate the patch

TA1 TA2

TA3
Evaluation

Goal-driven
decompilation

11

UNCLASSIFIED

Source: Bratus, July 2019

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 12

Current industry practice

Unit Testing
Functional Test
Regression
Compliance

Emulation
Hardware in the
Loop

Binary image

Test
Deploy

Fi
x

Source code

Build

Test & evaluation

Pass?

Operational system

Modify source code

Yes

No

Source: Daily, May 2021 Source: Azavea.com, August 2021

Source: Daily, May 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 13

Current industry practice

Unit Testing
Functional Test
Regression
Compliance

Emulation
Hardware in the
Loop

Binary image

Test
Deploy

Fi
x

Source code

Build

Test & evaluation

Pass?

Operational system

Modify source code

Yes

No

Challenges:
What if some source code isn't
available?

• Boutique reverse engineering
• Binary rewriting

What if the build chain is not the
same as before?

• Extensive re-testing, binary
 rewriting

Source: Daily, May 2021 Source: Azavea.com, August 2021

Source: Daily, May 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 14

AMP technical approach

Unit testing
Functional test
Regression
Compliance

Emulation
Hardware in the
Loop

Binary image

Test Deploy

Test & evaluation

Pass
?

Operational system

SME defines problem and
builds “candidate” solution
• Define changes that must

be made
• Determine patch start

location
• Identify where to store

patch/changes

Develop

Patch
Candidates

Potential reasons
• Lost source code
• Different build chain
• Legacy code
• Minimized resources
• Accelerated timelines

Yes

No

Understand the
binary
• Decompile
• Match functions
• Type definition

and parameters
• Semantic

equivalence
• Control flow

Build patch

Validate and Verify
• Noninterference
• Maintain control

flow
• Verify conditional

behavior
• Ensure coverage

maintained
• Verify bug

removed

Evaluate

Deploy

Apply
micropatch

Source: Daily, May 2021

Source: Azavea.com, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Major technical challenges, ideas, and approaches

15

TA1 Challenges:
• Search the space of semantically

equivalent representations
• Produce a decompiled

representation of a binary unit
• Targeted automated patch

generation and placement

TA2 Challenges:
• Track effects of patches from decompiled or IR to

binary throughout recompilation
• Identify footprint of changes on unit tests
• Recover or approximate program units and data

abstractions in families of IRs
• Recover build process for each level of IR to

produce exact binary code
• Verify non-interference with baseline function

TA3 Challenges:
• Faithful replication of legacy systems & emerging threats
• Challenge problems to evaluate the patch process across

variety of platforms and architectures
• Challenges that map to the stages of AMP technique

development
• Identify and close gaps in research

Actual binary

Source

Binary

G
oal-driven

decom
pilation

Tuned
intermediate
representations

BinOps
recompiler

∆

Existing
binary Code

with change

Integration
success

∆

Binary environment

010110
0110011010
0001011010

Footprint of
change

TA2 Assured recomplilation TA3 Evaluation

Truck-on-a-board testbed

Approach: Interrelated stacks of low-, medium,
and high-level intermediate representations;
modular/plugin architecture for decompilation

Approach: A new class of tool, recompiler,
combines binary and compiler-level analyses

Approach: Representative heavy
vehicle industry, which makes
extensive use of embedded
firmware for challenge problems

TA1 Goal-driven decompilation

6

Source: Bratus, July 2019 Source: Bratus, July 2019

Source: Daily, July 2019

TA3: Evaluation (heavy vehicle domain use case)

Provide tests of increasing difficulty culminating in networked system

Development Boards Heavy Vehicle Electronic
Control Module (ECU)

Actual Vehicle or
Truck System Testbed

Phase 1:
Commodity system

Phase 2:
Real-time system

Phase 3:
Networked system

16
This Photo by Unknown Author is
licensed under CC BY-SA

~5,000,000 lines of source code

~1000-10000 lines of source code
~500,000 lines of source code

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

http://www.elinux.org/Beagleboard:BeagleBoneBlack
https://creativecommons.org/licenses/by-sa/3.0/

DISTRIBUTION C. Distribution authorized to U.S. Government Agencies and their contractors. Other requests for this document shall be referred to DARPA/I2O.

17

AMP testbed at Colorado State University

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 18

Engine Control Module (Cummins CM2350)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 19

A bit of history & a bit of vision

Reverse Engineering ~ Math in RE
Halvar Flake, “RE 2006: New Challenges Need Changing Tools”

https://thomasdullien.github.io/about/#2006

Reverse Engineering ~ IR tower/tree lifting?
Halvar Flake, “RE 2006: New Challenges Need Changing Tools”

https://thomasdullien.github.io/about/#2006

Modular framework for binary research
A new generation of tools for maintaining binaries

• CodeCut: https://github.com/JHUAPL/CodeCut

• CodeHawk: https://github.com/static-analysis-engineering/codehawk

• VIBES: https://github.com/draperlaboratory/VIBES

• Remill, Anvil, Relic LLVM lifters: https://github.com/lifting-bits/remill, https://github.com/
lifting-bits/anvill, https://github.com/lifting-bits/rellic

• PATE binary patch verifier: https://github.com/GaloisInc/pate

• MCTrace code release: https://github.com/GaloisInc/mctrace

• Binary analysis and rewriting tools used by PATE and MCTrace:  
https://github.com/GaloisInc/{macaw, reopt, what4, crucible, elf-edit, renovate}, etc.

Towers of Intermediate Representations
“IRs are useful. What’s an IR?”

• IRs are everywhere

• LLVM passes ~ IRs, MLIR

• Ghidra uses P-code

• Angr uses VEX

• Binary Ninja has 3 public IRs

• But what is an IR?

• Trail of Bits: ….. why only
one?

Bugs span the semantic gap, and so should analyses!
Move up and down the tower of IRs as needed

• Buffer overflows: LLVM IR

• Adjacency: below LLVM IR

• Root causes like out-of-type
references: AST

• ToB solution: VAST/Multiplier

• Get all the IRs (as dialects of
MLIR)

• “Move up or down as
needed”

A tower of IRs
A sequence of compatible, interoperating IRs

IR 3 (“High”, AST)

IR 1 (“Low”)

IR 0 (“Micro”)

IR 2 (“Medium”)

Type inference, type confusion

Abstraction-reusing exploit primitives

Low-level memory corruption,
SmthHammer, SmthSpectre

A tree of IRs? A lattice of IRs?
“A sufficiently lifted IR is indistinguishable from a DSL”

IR 3 (“High”, AST)

IR 1 (“Low”, pointers/aliasing)

IR 0 (“Micro”)

IR 1.1 (“Struct A”)

IR 2 (“Low”, heap adjacency)

IR 2.1 (“heap shape”)IR 1.2 (“Struct B”) IR 2.1 (“sessions”)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 27

AMP tools & prototypes

Modular framework for decompilation research
A new generation of tools for maintaining binaries

https://github.com/redballoonsecurity/ofrak

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 29

Unpack, Analyze, Modify, Pack Workflow

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 30

OFRAK cont.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 31

OFRAK cont.

Action Menu

Resource Tree Pane Hex Pane

Minimap
Resource Details Pane

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 32

OFRAK Patch Maker

Source: Larson, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 33

Diagnostics adapter autotomy

Source: Larson, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 34

De-linking a binary back into modules

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 35

John Hopkins University/APL CodeCut

• Current build process for embedded systems & Cyber Physical System’s (CPS) firmware is one-way
• Reversing to patch or otherwise modify a binary is manual, very labor-intensive, and disjoint from the software

development ecosystem

• AMP envisions “unlinking” and “relinking” along with improved decompilation to make binary patching faster and
approachable to non-experts

Binary

Firmware

main.o

unk_mod1.o

net_lib.o

unk_mod2.o

std_lib.o

math_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.o

std_lib.o

U
nlink

CodeCut

Binary

Firmware

(“blob”)

main.c

math_lib.c

net_lib.c

crypt_lib.c

std_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.o

std_lib.c

Com
pile

Link
mlib_patch.c #

mlib_patch.o #

Patch
 #

Patched

FirmwareRecompile

Relink

Traditional build process

Decompile

AMP envisioned process

Source: explainthatstuff.com, August 2021

Source: Osborn, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 36

John Hopkins University/APL CodeCut – Decompilation for select object files

AMP Tools Status:
• Implemented deep learning

model that improves accuracy over
statistical approaches

• Full Ghidra implementation

• Working towards module-level
decompilation

Binary

Firmware

main.o

unk_mod1.o

net_lib.o

unk_mod2.o

std_lib.o

math_lib.c

main.o

math_lib.o

net_lib.o

crypt_lib.o

std_lib.o

U
nlink

CodeCut

mlib_patch.c #

mlib_patch.o #

Patch
 #

Patched

FirmwareRecompile

Relink

Decompile

• Background: Reverse engineers currently operate on a function level
because there is no automated way to recover module (object file)
boundaries within a fully-linked binary -- Decompilation has to happen at a
function or full-program level

•

• Problem Statement: Given only call graph information for a large binary,
recover the boundaries of the original object files

Source: Osborn, August 2021
Source: explainthatstuff.com, August 2021

Source: Osborn, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 37

What is the impact?

Measurement & Edge Detection

Software Architecture
(Module Level Call Graph)

Source: Osborn, August 2021

Source: Osborn, August 2021

Source: Osborn, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 38

Aligning available source code with the binary

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 39

• BSI assists in micropatch localization by aligning source code to a target binary using a probabilistic
graph matching algorithm

• Unknown information about the original build system and program version can complicate the process of aligning
a deployed binary back to its original source code

• BSI handles this problem by searching over a range of build configurations and program versions
• The core graph matching algorithm assigns a source function to each binary function in a way that

preserves individual function attributes as well as overall program structure

Binary Structure Inference (BSI) concept of operations

• BSI performs detailed analysis of where source
code patches effect a target binary

• BSI enables users to quickly import source
information into their binary inspection tools

• The user can create mappings between the
source code and a lifted Intermediate
Representation (IR) to enable more granular
analysis

• Using the aligned source code and IR
mappings, BSI can perform detailed analysis on
where a given source code patch will
affect the binary

BSI will help reason over partial unknowns that affect patch location

 Open
Source

Libraries
Build

SystemClosed
Source Tree

Patch diff Vulnerable
Binary

KnownUnknown

Known
Micropatch

BSI

Compiler
Optimizations

Mismatched
source
version

Source: Stricklan, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 40

Binary Structure Inference (BSI) system architecture

Open-Source
Source
Analysis

Binary
Analysis

Target Program
Source

Graph Matcher

 Input Data

 BSI Component

 Output Data

Linux repositories

Source <->
BNIL Mapping

👤

👤

👤

Database of annotated
call graphs

Annotated Binary
Call Graph

Output
• Mapping between source

and binary functions
• Inferred build system

information
• BinaryNinja IL’s for target

function mapped to
source code from
matched function

Target
Binary

Function
attributes
• Strings
• Constants
• Parameters
• …

Source: Stricklan, August 2021

Github Gitlab
SOURCEFORGE

Linux repositories

LLVM

Compiler
Infrastructure

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 41

Relational analysis: Explaining behavior differences after patch

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 42

Patches assured up to trace equivalence (Galois)

The Galois PATE tool is an automated relational verifier that
explains the differences between two binaries or firmware
images (e.g., an original and patched binary)

It reduces the time required to build high-assurance binary patches
for embedded systems and avionics by:

• Automatically applying static program verification
techniques

• Brings the power of formal reasoning to the traditionally
risky binary patching process, improving confidence in
patches that must work on the first try

• Extracting specifications from the original binary
• Removes the need for users to manually write detailed

specifications, while being able to incorporate specifications
if desired

• Does not require hardware models, thus enabling it to
handle complex/custom embedded hardware interfaces

• Explaining the impact of changes in terms of differences in
observable behavior

• Makes explanations of patch effects understandable to
domain engineers without a background in verification or
reverse engineering; includes an interactive proof
visualization

• Classifying changes as benign when they only improve the
program (e.g., removing known-bad behaviors)

• Improves confidence in bug fixes for high-value systems
and reduces the analysis burden for safe patches

Source: Ravitch, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 43

Interactive equivalence proofs

● Proof is reified as a data structure that can be visualized
● Leaves are proof goals, where failures (red and yellow) represent

observable behavioral differences between the original and patched
binaries

● Each node corresponds roughly to a collection of basic blocks without
back edges

A basic block that always
exhibits different behavior
in the patched binary; note
that this may be intended
(depending on the nature
of the patch)

A basic block that sometimes
exhibits different behavior in the
patched binary; this is
accompanied by a differential
summary that explains the
conditions under which the
behavior differs

The summary is a first-order
logical formula over function
inputs

Source: Ravitch, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 44

Verification strategy

Source: Ravitch, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 45

Patching a binary at a higher level of abstraction

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 46

Problem: Directly patching legacy,
stripped binaries is insanely difficult,
expensive and error-prone

Solution:
1. We lift binary to familiar C-like code

2. You directly patch the C-like code!

3. We automatically translate to a
minimally-invasive patch on the
binary

Aarno Labs Multifocal Relational Analysis for Assured Micro-patching (MRAM)

if (brake_switch != 0) {
 if ((speed_value != 0 &&
 (speed_value < 0)) {
 if (bumper[4] == 0) {
 bumper[6] = 1;
 }
 }
} else {
 bumper[6] = 0;
 bumper[4] = 0;
}

0xccc STR R1,[R7, #0x0]
0xcce LDR R3,[R7, #0x0]
0xcd0 LDRB R3,R3,[R3, #0x5]
0xcd2 STRB R3,[R7, #0xf]
0xcd4 LDR R3,[R7, #0x4]
0xcd6 ADDS R3,R3,0x3
0xcd8 LDRB R3,R3,[R3, #0x0]
0xcda UXTH R3,R3
0xcdc LSL R3,R3,0x8
0xcde UXTH R2,R3
0xce0 LDR R3,[R7, #0x4]
0xce2 ADDS R3,R3,0x2
0xce4 LDRB R3,R3,[R3, #0x0]

Patched
EXE

Source: Gordon, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 47

How to assure patch fixes the problem?

Problem: How do you assure the patch correctly
fixes the problem, does not break the desired
behavior and has no unintended consequences?

AMP MRAM Solution:
1. We analyze original versus patched binary

2. We precisely track the differences

3. We provide intuitive details of how program
actions differ with varying input

4. You decide if these details represent a correct
patch … much easier than reasoning about
code!

Global Analysis:
• 20 functions unchanged
• 1 function changed:

AMP Challenge 3 Example

Source: Gordan, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 48

Advanced binary abstract interpretation engine enables our techniques
• Recover source-level constructs from binary

• Invariants on the values of program variables

Progress on AMP Challenges:
• Automatically generated patches from manual changes on lifted code

• Minimal binary disruption: Average patch changes only 4 instructions

• Automated relational analyses denotes how functions have changed

• Structural invariant, control-flow invariant, etc.
• Automated relational analysis demonstrates how functions have changed

based on function input and program state / actions

Multifocal Relational Analysis for Assured Micro-patching (MRAM)

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 49

PatcherX (Purdue U. / EPFL)

TA1 Performers

Patched function source
(or high-level IR) and its location
in the original binary

Source-level (or high-level IR)
Patch Verification

DARPA/TA3

Addresses of globals and functions used by the
patched function
in the original binary

Original binary

Patch (currently, as a source diff)

Common functions’ locations
(e.g., printf, HAL, ...)

Outputs

Patch assurance

Patched binary

Patched Function Compiler

CFG of the original binary

Patched Function Injector

Assembly-level Patch Verification

Targeted Fuzzer

HALucinator

Emulation

Assembly-level Diffing Assembly-level Diffing

Source: Bianchi, May 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 50

PatcherX/DisPatch tool

• DisPatch

• Demonstration: Patching ArduPilot Drone Firmware
• Firmware dumping
• DisPatch workflow
• Validation: Roll rate reference enforcement
• Validation: Roll P parameter enforcement

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 51

Tool summary

• Patching (Semi-automated approach)
• Ability to semi-automatically “micropatch”

• Dealing with identifying space in the original binary and “linking” the patch
code with the original code

• Preserved
• Removal of the vulnerability
• Performance (speed w.r.t. runtime requirements)

• Static verification (potentially, human in the loop verification)
• Ability to compute a patch’s semantic effects
• Ability to visualize a patch’s semantic effects

• Dynamic verification
• Ability to emulate and instrument the original and the patch code in the

different supported architecture
• Ability to collect execution traces of the original and the patched binary
• Ability to compare dynamically-collected traces, showing trace equivalency

when the original/patched binaries are provided with benign inputs
• Ability to estimate timing of emulated execution traces

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 52

What if there is no compiler?

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 53

Context and motivation for satellite patching challenge
Verified, Incremental Binary Editing with Synthesis (VIBES) tool (Draper Labs)

Source: Casinghino, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 54

Goal: Usable front-end and AMP tool integration

Source: Casinghino, August 2021

55

From maintaining individual firmware(s) to patching at scale

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 56

E-BOSS: enhance SBOMs with flow metadata to trace flaws to triggers

• Keep advanced metadata in addition to symbols to effectively trace back flaw evidence to triggers

• Enhance SBOMs with new types of rich metadata, enabling cyber reasoning for triage and remediation

• Remediate with eSBOMs: Recover paths and triggers to crash site from crash snapshots (“crash dumps”), remediate by blocking
triggers once recovered

• Block triggers and flows leading to quick remediation

compiler

loader

re-
compil

re-
linker

.o

source

m

e

m

o

r

y

linker

patche
r

static
/

Resolved
dependencie
s
metadata

Data flow
metadata

Memory
allocation
metadata

= flow metadata = new algorithms and cyber reasoning
tools = recovered triggers

Cyber reasoning tools
enabled by new metadata

Existing build tools
 to be extended crash info…extended and combined

Rapid
Triage

Remediation

Trigger
Recovery

Feedback for maintenance

Triggers

57

New tools to maintain software post-compilation & post-linking

Advanced metadata is generated at each stage of the build process, enables maintenance of binaries

58

Thank you!

59

There is never enough time. Thank you for yours!

60

• The Almighty DWARF: A Trojan Horse for Program Analysis, Verification, and Recompilation, Philip Zucker
https://www.philipzucker.com/dwarf-patching/

• DWARF as a Shared Reverse Engineering Format, Romain Thomas,
https://lief.re/blog/2025-05-27-dwarf-editor/

Appendix: DWARF links

