UNCLASSIFIED

New kinds of tools for maintaining and sustaining software and
firmware

Sergey Bratus

Images of specific products throughout this presentation are used for illustrative
purposes only. Use of these images is not meant to imply either endorsement or Source: Robinson, September 2019
vulnerability of a product or company.

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Sergey’s disclaimers

* Obligatory: Any opinions are mine alone and don’t represent any of my
employers past or present.

 Substantive:

* This is a personal perspective on other people’s amazing work. All credit
goes to them, not me.

* This is a tiny, biased sample of a great domain. Please tell me what | am
missing!

* Trivial: | am a former mathematician. | tend to see math everywhere :)

Official Disclaimer

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views,
opinions and/or findings expressed are those of the author
and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S.
Government.

DARPA: High Risk, High Reward Research

The Mother of Personalized Assistant Cyber
Internet All Demos That Learns Grand Challenge
§ :C

| Ind 'l\[wﬂAﬁ’—T'le‘w 7
B] xl o t;‘ﬁ g
4 ﬂiz-lu A o YRER] i
DmPA 4 '\L\VH 1BY?T 5
/ "/f/,u' =

AIXCL

AI CYBER CHALLENGE

Project MAC Lisp Autonomous Al and Cyber Challenge
(Mathematics and Computation) Processor Vehicles
FORW/ARD

Eaana L PIS B RATRAS SestmTy Distribution Statement A: Approved for Public Release, Distribution Unlimited.

Safe Documents: Regain trust in electronic documents by creating
el tools to build machine-readable unambiguous format definitions
i?ﬁ*é i SR and secure verified parsers

| Assured Micropatching: Create tools for rapid binary patching of
- legacy mission-critical systems, even where the original source code or
- build process aren’t available

N Verified Security & Performance Enhancement of Large Legacy
g E-spﬂ[ms Software: Create practical tools for incremental enhancement of
software systems with new verified code that is both correct-by-
construction and safely composable with the rest of the system

o

.
R
SSa

~—yyt

Hardening Development Toolchains Against Emergent Execution
Engines:

Develop practical tools to anticipate, isolate, and mitigate emergent
behaviors throughout the software lifecycle, to improve security
outcomes in software for complex integrated systems

Enhanced SBOM for Optimized Software Sustainment:
Develop Enhanced Software Bill of Material (eSBOM) advanced
metadata technology to enable rapid triage-and-remediation of
vulnerabilities in software at scale.

We are still living out the 1960s software development revolution

Awesome:

* High-level programming languages

* Automating software composition (linkers)
* Large reusable code libraries

And yet:
* Source -> compiler -> linker -> unmaintainable binary
* Binaries aren’t meant to be incrementally updated

* “Tear down & rebuild the house to remodel a room”

https://en.wikipedia.org/wiki/Grace_Hopper

UNCLASSIFIED

Challenge: Rebuilding and re-integration needs costly manual effort

Patch A

Original source code

2 ’ —— Patched code

Source R
0666/ , <
&
\0\>\\6, .7 ’ o
\ e .
e New build process
Build T Manual
process P

Actual binary ~_____ .~ M -

ety Rebuilt binary,

-
-
o 2
-
. -
_ad — o =
. I
-
oo =

fails to integrate

N S S
\\ Source: Bratus, July 2019
Binary /

Integratable Desired: Patched binary with minimal changes, successfully integrates
binaries

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

UNCLASSIFIED

Challenge: Rebuilding and re-integration needs costly manual effort

Source code that can

Semantically equivalent, but | Patch A situate the patch
fails to situate the patch « g .
/A/ Original source code
.-------_-_l__....-------------.--------------------------------------.-.... .: ————— \\\
.............. Manual L A
.“‘ > 7/ .'0‘ /
%o 14 R4
...... 7 <
.. i AP patched code
Source ,//
&
0 T
n\s\\fé/ -
-) z\ /// .
Build O{\Q\()” \ New build
process A Manual process
Actual binary el e e _—-_;._ -- ji)
O AP Rebuilt binary,
e fails to integrate

S e e ===

Source: Bratus, July 2019
Binary /

Integratable Desired: Patched binary with minimal changes, successfully integrates
binaries

UNCLASSIFIED
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

UNCLASSIFIED

Vision: Micropatches with certification evidence via automation

Semantically equivalent, but
fails to situate the patch

Source
automated « &/ S @ —
,,,,,,,,,,,,,,,,,,,,,, automated
fr “““““““““““““““
Goal-driven O Assured recompilation with
decompilation ‘=== = & 7 guarantees of non-interference

<58 — o = ——
————————————

-
-
— =

— =
e

— =
— o =
-

T T A —— —\\ Source: Bratus, July 2019
Binary /

Integratable Patched binary with certification evidence
binaries

UNCLASSIFIED 10
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

UNCLASSIFIED

Vision: Micropatches with certification evidence via automation

Semantically equivalent, but
fails to situate the patch

u,
LIS
.....
3

Source

Assured recompilation with guarantees
of non-interference

Goal-driven
decompilation

P —
el

Actual binary > = i i T A3

= =
— =
e -

-

______ Evaluation

- - _ -\\ Source: Bratus, July 2019
Binary /

Integratable Patched binary with certification evidence
binaries

UNCLASSIFIED

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 11

Current industry practice

Source code

= O -] i Test & evaluation
Binary image

Operational system

& SystemsCyber / AMP-Challenge-A-Keplers-Law

/Unit Testing \

Private
Functional Test
Code Issues 1 Pull requests 1 Actions RegreSSion
Compliance
¥ main ~ P 2
. asS ¢
Build
AMP-Challenge-A-Keplers-Law / BBB /
Demo User ... onSep2 Emulation
Hardware in the
Loop J
M build last month Source: Daily, May 2021 Source: Azavea.com, August 2021
3 last th H
e stment Modify source code
¥ can_interface.txt last month #include <linux/can.h>
e <linux/can/raw.h>
Y makefile last month

Fix

Source: Daily, May 2021

a a A3
[A A

int main (int argc, char * argv[]) {

struct ifreq ifr;

struct sockaddr_can addr;

struct can_frame cf;

ssize_t nbytes;
struct can_filter rfilter[2];

int s = socket (PF_CAN, SOCK_RAW, CAN_RAW);

strepy(ifr.ifr_name, argv[1]);

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 12

Current industry practice

Source code

= O :]] Test & evaluation
Binary image

Operational system

/Unit Testing \ b : =

& SystemsCyber / AMP-Challenge-A-Keplers-Law

Private
Functional Test

Code Issues 1 Pull requests 1 Actions RegreSSion
Compliance

¥ main ~

Build
AMP-Challenge-A-Keplers-Law / BBB /
Demo User ... onSep2 O Emulation

Hardware in the
Loop J

B build last month Source: Daily, May 2021 Source: Azavea.com, August 2021

[last montt H

e et Modify source code
[can_interface.txt last month tinclude <linux/can.h> Challengesl
M makefile last month

What if some source code isn't

Source: Daily, May 2021 % ? available?
f E Boutique reverse engineering

Fix

Lot an (tot arge, <har = argv(l) { * Binary rewriting
e e What if the build chain is not the
e same as before?
e e e + Extensive re-testing, binary
strepy(if.ifr_name, argv[1]); rewriting

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 13

AMP technical approach

Binary image

Test & evaluation

/Unit testing

Functional test

Regression
Compliance

v

/ Understand the

binary

* Decompile

+ Match functions

* Type definition
and parameters

+ Semantic
equivalence

+ Control flow

A

Emulation

Hardware in the

Loop

~

/

>

Build patch

4

)

\l

SME defines problem and
builds “candidate” solution

Define changes that must
be made

Operational system

Source: Azavea.com, August 2021

~

Patch
Candidates

Determine patch start
location

Develop

Identify where to store
patch/changes

)

"o N

ﬁ| Evaluate ,\

Potential reasons

Lost source code
Different build chain
Legacy code
Minimized resources
Accelerated timelines

Source: Daily, May 2021

Apply
micropatch

Validate and Verify

N

Noninterference
Maintain control
flow

Verify conditional
behavior

Ensure coverage
maintained
Verify bug
removed

4

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

14

Major technical challenges, ideas, and approaches

TA1 Challenges:
Search the space of semantically
equivalent representations

* Produce a decompiled
representation of a binary unit

» Targeted automated patch
generation and placement

K Actual binary

Source: Bratus, July 2019

Approach: Interrelated stacks of low-, medium,

and high-level intermediate representations;
modular/plugin architecture for decompilation

TA2 Challenges:

Track effects of patches from decompiled or IR to
binary throughout recompilation

Identify footprint of changes on unit tests
Recover or approximate program units and data
abstractions in families of IRs

Recover build process for each level of IR to
produce exact binary code

Verify non-interference with baseline function

TA3 Challenges:
Faithful replication of legacy systems & emerging threats

» Challenge problems to evaluate the patch process across
variety of platforms and architectures

» Challenges that map to the stages of AMP technique
development

+ Identify and close gaps in research

/ TA1 Goal-driven decompilation \

BinOps
recompiler

"fo10110
01100410107
" joop1013010

Integration
success

Footprint of

/

/ TA2 Assured recomplilation \
E_xisting Cod
'ﬂy W(i)thechange

change
K Binary environment /
Source: Bratus, July 2019

Approach: A new class of tool, recompiler,
combines binary and compiler-level analyses

TA3 Evaluation

Source: Daily, July 2019

Approach: Representative heavy
vehicle industry, which makes
extensive use of embedded
firmware for challenge problems

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 15

TA3: Evaluation (heavy vehicle domain use case)

Provide tests of increasing difficulty culminating in networked system

Phase 1: Phase 2: Phase 3:
Commodity system Real-time system Networked system
Development Boards Heavy Vehicle Electronic Actual Vehicle or

Control Module (ECU) Truck System Testbed

~1000-10000 lines of source code

~500 lines of source ode -
This Photo by Unknown Author is NS,OOO,OOO lines of source code

licensed under CC BY-SA 16
DISTRIBUTION A: Approved for public release; Distribution is unlimited.

http://www.elinux.org/Beagleboard:BeagleBoneBlack
https://creativecommons.org/licenses/by-sa/3.0/

“~ Exhaust Emissions
| fter Treatnt F

=X f
< A
[| y
” e j
- = W A / & als y/
! =
\

Control
Module

& 9 2 | Dynamometer
Lk *) 7 (Dyno)

DARPA Engine Control Module (Cummins CM2350)

::Z:")ﬁ

)

v fe
L
sl i
AN Wiy
N

@

1l
)
-

coo

¥ YERLLELTOOTOTeevea T
sLOLTCTCTone

S SLs

» % —— P

gt TN T WA
e ATy

LLEUSRET R LALTER AL LR TRRRA LU §

ECM CODE

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

A bit of history & a bit of vision

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

19

Reverse Engineering ~ Math in RE
Halvar Flake, “RE 2006: New Challenges Need Changing Tools”

e #1and #2: Automated data structure recovery; building UML inheritance diagrams from binaries.

e Coupling the above with a debugger to allow run-time object inspection and editing.

e #3: Automated modularization of binaries (decomposing binaries to recover library structure /
groupings).

o #4: De-templating of heavily templated C++ code.

o #7. “Normal forms” for sequences of code (a Groebner-base equivalent?)

e #8: A visualization for callgraphs that shows each node as a Poset to make sure the order of
outgoing edges is visualized, too.

e 9#: Recovery of the internal state machine of a target.

e 10#: Semantics-based FLIRT-style library identification.

Interestingly, challenge #5 - automated input data creation - is the one where most progress has
happened since the talk. To my great amusement, this talk suggests the use of SAT solvers to do it. At
that time, | was obviously unaware at the time of the research on SMT that is happening and will lead to
Vijay Ganesh’s great 2007 thesis (and the release of STP).

https://thomasdullien.github.io/about/#2006

Reverse Engineering ~ IR tower/tree lifting?
Halvar Flake, “RE 2006: New Challenges Need Changing Tools”

e #1and #2: Automated data structure recovery; building UML inheritance diagrams from binaries. *

e Coupling the above with a debugger to allow run-time object inspection and editing.

e #3: Automated modularization of binaries (decomposing binaries to recover library structure / *
groupings).

o #4: De-templating of heavily templated C++ code.

o #7. “Normal forms” for sequences of code (a Groebner-base equivalent?)

e #8: A visualization for callgraphs that shows each node as a Poset to make sure the order of
outgoing edges is visualized, too.

e 9#: Recovery of the internal state machine of a target. *

e 10#: Semantics-based FLIRT-style library identification. *

Interestingly, challenge #5 - automated input data creation - is the one where most progress has
happened since the talk. To my great amusement, this talk suggests the use of SAT solvers to do it. At
that time, | was obviously unaware at the time of the research on SMT that is happening and will lead to
Vijay Ganesh’s great 2007 thesis (and the release of STP).

https://thomasdullien.github.io/about/#2006

Modular framework for binary research

A new generation of tools for maintaining binaries

* CodeCut: https://github.com/JHUAPL/CodeCut
* CodeHawk: https://github.com/static-analysis-engineering/codehawk
* VIBES: https://github.com/draperlaboratory/VIBES

* Remill, Anvil, Relic LLVM lifters: https://github.com/lifting-bits/remill, https://github.com/
lifting-bits/anvill, https://github.com/lifting-bits/rellic

* PATE binary patch verifier: https://github.com/GaloisIinc/pate
* MCTrace code release: https://github.com/Galoisinc/mctrace

* Binary analysis and rewriting tools used by PATE and MCTrace:
https://github.com/Galoislnc/{macaw, reopt, what4, crucible, elf-edit, renovate}, etc.

Towers of Intermediate Representations

“IRs are useful. What’s an IR?”

* |Rs are everywhere

LLVM passes ~ IRs, MLIR

Ghidra uses P-code

Angr uses VEX
e Binary Ninja has 3 public IRs
e But what is an IR?

 Trail of Bits: why only
one?

Finding bugs in C code with
Multi-Level IR and VAST

POST JUNE 15, 2023 1 COMMENT

Intermediate languages (IRs) are what reverse engineers and vulnerability
researchers use to see the forest for the trees. IRs are used to view
programs at different abstraction layers, so that analysis can understand
both low-level code aberrations and higher levels of flawed logic mistakes.
The setback is that bug-finding tools are often pigeonholed into choosing a
specific IR, because bugs don’t uniformly exist across abstraction levels.

We developed a new tool called VAST that solves this problem by providing
a “tower of IRs,” allowing a program analysis to start at the best-fit
representation for the analysis goal, then work upwards or downwards as
needed. For instance, an analyst may want to do one of three things with a
stack-based buffer overflow. (1) Identify it. (2) Classify it. (3) Remediate it.

Bugs span the semantic gap, and so should analyses!
Move up and down the tower of IRs as needed

Now comes choosing the right IR. Some bug properties are only apparent
at certain abstraction levels. A buffer overflow is easily identified in LLVM
IR, because stack buffers in LLVM IR are highly characteristic (i.e., created
via the alloca instruction). This is the “best-fit” IR for identification.

For classification, a buffer overflow can go from a common bug to a
security threat if the buffer sits near sensitive data in program memory.
This only becomes clear below the LLVM IR level, near or at the machine
code level, where buffers are fused together with other sensitive
information, forming a “stack frame.”

The last part of the story is communication and remediation. The reason
why the buffer overflowed in the first place can be a side-effect of a type
conversion on a buffer index that was self-evident in the program’s
abstract syntax tree (AST), the highest level IR. Connecting these facts
together used to be impossible, but VAST’s tower of IRs is changing this.
Bugs span the semantic gap, and so should analyses.

Buffer overflows: LLVM IR
Adjacency: below LLVM IR

Root causes like out-of-type
references: AST

ToB solution: VAST/Multiplier

« Get all the IRs (as dialects of
MLIR)

 “Move up or down as
needed”

A tower of IRs

A sequence of compatible, interoperating IRs

IR 3 (“High”, AST) !)

(zz:ﬁ}b Y

IR 2 (“Medium?”)

-

_ — L —_
IR1 (“Low”)

o

eap——

IR 0 (“Micro”) !}

A

\4

A

\4

Type inference, type confusion

Abstraction-reusing exploit primitives

A

Low-level memory corruption,
SmthHammer, SmthSpectre

A tree of IRs? A lattice of IRs?

“A sufficiently lifted IR is indistinguishable from a DSL”

.n IR 3 (“High”, AST) li

—

IR1 1 (“Struct A”) l LIR1 .2 (“Struct B”) J t IR 2.1 (“heap shape”) l t IR 2.1 (“sessions”) J
t IR 1 (“Low”, pointers/aliasing) L IR 2 ("Low”, heap adjacency)

L IR 0 (“Micro”) l}

AMP tools & prototypes

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

27

Modular framework for decompilation research

A new generation of tools for maintaining binaries

5>
3>
PACK

O
OFRAK

- = % o
Firmware UNPACK ANALYZE MODIFY

RESOURCES

* Represent firmware and
its sub-structures

——=z COMPONENTS
X * Encapsulate logic
Device Augmented * Codify reverse-engineer’s
Firmware

knowledge

https://github.com/redballoonsecurity/ofrak

Unpack, Analyze, Modify, Pack Workflow

Red Balloon
Security

OFRAK

=) < &.‘.—’—/
Device Augmented
Firmware ANALYZE Firmware

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 29

OFRAK cont.

RESOURCES

* Represent firmware and
its sub-structures

COMPONENTS

Encapsulate logic

Codify reverse-engineer’s
knowledge

Integrate existing tools,

such as: m &~

OFRAK cont.

Hesource Tree Pane HeX Pane

1 Unpack [-]1 File, GzipData File, GzipData / File, TarArchive BinaryNinjaAnalysisResource, File: hello_elf, Elf

[-] File, TarArchive

3 Unpack

. [+4] Folder:
Recursively

BinaryNinjaAnalysisRescurce, File: hello_elf, Elf

4 Download ElfBasicHeader

ElfHeader
New

ElfProgramHeader

Q 1dentify |~ ElfProgramHeader

El1fProgramHeader
~* Analyze

ElfSectionHeader

M Modify ElfSection

ElfSectionHeader
& Pack

ElfSection, CodeRegion

S Pack Recursively ElfSectionHeader

[-] ElfSection: .text, CodeRegion: Ox8018-0xb664
[-] ©x8018: exit
L_ BasicBlock
DataWord: 0x8048-0x804c
[~ Ox804c: register_fini
0x8074: __do_global_dtors_aux

BinaryNinjaAnalysisResource, GenericBinary, FilesystemEntry, File, Program, Elf

Attributes:

* FilesystemEntryAutoAttributes:
o name: "hello_elf"
¢ stat:
1. @x8lad4 (33188)
2. Bx2302d (143405)
3. 0x3d (61)
4. ox1 (1)
5. 0x0 (0)

Resource Details Pane

00000000
00000010:
20888UZ0:
00000030:
00000040:
00008050
00008060 :
00000070:
00000080:
00000090
000000a0:
000080b0 :
000000¢0:
000080d0:
000080e0:
0000800 :
00000100:
00000110:
00000120:
00000130:
00008140:
00000150:
00000160:
00000170:
00000180:
00000190:
000001a0:
000001b0:
000001c0:
000081d0:
000001e0:
000001f0:
00000200:
00008210:
00000220:
00000230:
00000240:
000008250:
00008260
00000270:
00000280:
00008290:
00008220
000002b0:

888838388883 838838883883883888388388888383888888

ELF ciieiannas

INPUTS

OFRAK Patch Maker

Make patching compiled firmware as easy as patching source code

OUTPUTS

APPROACH

Leverage & automate existing linker scripting functionality in a simple API

. Build ' from source and existing objects

. {Optional) Use OFRAK analysis and metadata in BOM to automatically generate
mappings situating the patch in the target binary

. {Optional) Provide additional symbol information derived from the target binary
Build FEM [Final E from BOM, patch mappings (generated
in Step 2 or manually defined), and optional additional symbol information
Inject situated machine code in FEM into firmware

RESULTS

reduction in LoC for complex security feature build
development time reduction for simple single-function vulnerability patch

STEPS
1-5

Source and
Existing
Objects

®

OFRAK
Firmware
Resource

Patch
Situation in

Symbol
Information

PROBLEM

CHALLENGE

Diagnostics adapter autotomy

Ground vehicle diagnostics adapter used by DoD customer(s) comes packaged with Bluetooth
and WiFi connectivity

from firmware with

APPROACH

Use , @ modular firmware reverse engineering and analysis framework built by Red
Balloon Security (RBS) under DARPA AMP, to apply RBS’s proprietary Autotomy algorithm to
remove unused and unwanted features.

RESULTS

in firmware by removing all associated code
of code / added free space
* Modifying device firmware was extremely easy — no manufacturer signature to bypass

el ' frL
prreeen -
‘mua:] i
iseses " =
y Ctepl ot (W
v v L 1

Top Right: Hardware teardown results of the ground
vehicle diagnostics adapter

Botiom Right: Example outcome of a payload taking

advantage of free space with ASCH animation playing
instead of normal ping function

Source: Larson, August 2021

T
1

ead Jella] feemd

i
/

F VT oVl ad U Tt §d
I A T S Sy B R B A VIR R
Ik Bk A NBaad Selled Sad SBN Sad Tnd

De-linking a binary back into modules

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

34

John Hopkins University/APL CodeCut

* Current build process for embedded systems & Cyber Physical System’s (CPS) firmware is one-way

* Reversing to patch or otherwise modify a binary is manual, very labor-intensive, and disjoint from the software
development ecosystem

* AMP envisions “unlinking” and “relinking” along with improved decompilation to make binary patching faster and

approachable to non-experts Traditional build process

main.c =) main.o =)
math_lib.c math_lib.o Binary

(@)
net_lib.c) net_lib.o — Firmware
3 e s
. — . ~ \\ [/
crypt_lib.c = crypt_lib.o ("blob™)
std_lib.c std_lib.c
Source: explainthatstuff.com, August 2021
AMP envisioned process t

‘ main.o ‘ M Decomp“e ; ‘
Binary unk_mod1.0 omathibo | TAIRC
o : - : Patch e
Firmware = net_lib.o =1 W mlib_patch.c # @ Patched
- o >
g unk_mod2.0 ~ M Recompile ‘ ~ Firmware

std_lib.o std_lib.o mlib_patch.o #

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Source: Osborn, August 2021 35

John Hopkins University/APL CodeCut — Decompilation for select object files

« Background: Reverse engineers currently operate on a function level AMP Tools Status:
because there is no automated way to recover module (object file) . Implemented deep learning
boundaries within a fully-linked binary -- Decompilation has to happen at a model that improves accuracy over
function or full-program level statistical approaches

R4 » Full Ghidra implementation

, « Working towards module-level
Source: explainthatstuff.com, August 2021 decom pilation

» Problem Statement: Given only call graph information for a large binary,
recover the boundaries of the original object files

mm) | Main.o m) MaANO Decompile § =)
Binary unk_mod1.o math_lib.o math_lib.c
O Patch
Firmware % net_lib.o =] net,lib.o mlib_patch.c # o Patched
S : =
,(‘52 unk_mod2.0 =~ crypt_lib.o Recompile ‘ ~ Firmware
std_lib.o std_lib.o mlib_patch.o #

Source: Osborn, August 2021
DISTRIBUTION A: Approved for public release; Distribution is unlimited. 36

What is the impact?

Software Architecture

.={Module Level Call Graph)

sys_self_state

AA Lo A NN N Nl AN~ A
7L 1 W v 1 1 M Y A L A N AN
) \H[\'] I I I \
“ Measurement & Edge Detection
37

Source: Osborn, August 2021 DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Aligning available source code with the binary

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

38

Binary Structure Inference (BSI) concept of operations

« BSI assists in micropatch localization by aligning source code to a target binary using a probabilistic
graph matching algorithm

Unknown information about the original build system and program version can complicate the process of aligning
a deployed binary back to its original source code

BSI handles this problem by searching over a range of build configurations and program versions

The core graph matching algorithm assigns a source function to each binary function in a way that
preserves individual function attributes as well as overall program structure

Mismatched

* BSI performs detailed analysis of where source Compiler source
code patches effect a target binary Optimizations

BSI enables users to quickly import source

information into their binary inspection tools Known BSI
Open

The user can create mappings between the % Source

source code and a lifted Intermediate Libraries
Representation (IR) to enable more granular Closed

Vulnerable
Binary

Source Tree

analysis
Using the aligned source code and IR
mappings, BSI can perform detailed analysis on BSI will help reason over partial unknowns that affect patch location

where a given source code patch will
affect the binary w

DISTRIBUTION A: Approved for public release; Distribution is unlimited. Source: Stricklan, August 2021

Binary Structure Inference (BSI) system architecture

Database of annotated

call graphs

Linux repositories
—]

Linux repositories
Github Gitlab
FORGE

Source
Analysis LLVM

Compiler ap
Infrastructure

Open-Source

Target Program
Source

Graph Matcher

Binary
] Input Data Analysis

I BSI Component

Annotated Binary
Call Graph

| Output Data

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Function
attributes
+ Strings
» Constants
« Parameters

Source <->
BNIL Mapping

Output

« Mapping between source
and binary functions

* Inferred build system
information

 BinaryNinja IL's for target
function mapped to
source code from
matched function

Source: Stricklan, August 2021

40

Relational analysis: Explaining behavior differences after patch

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

41

Patches assured up to trace equivalence (Galois)

Supports PowerPC and
ARM; can easily be
extended to other
embedded architectures

Computes a minimal
equivalence condition for
each block

Reification of the proof
term that observes
equivalence

Parallel traversal over the
leaves of the proof tree to

automatically verify safety

Success

Source: Ravitch, August 2021

(0] ¢

Patched

Binary /
Firmware

Original

Binary /
firmware

The Galois PATE tool is an automated relational verifier that
explains the differences between two binaries or firmware
images (e.g., an original and patched binary)

It reduces the time required to build high-assurance binary patches
for embedded systems and avionics by:

Code Discovery

Automatically applying static program verification
techniques

« Brings the power of formal reasoning to the traditionally
risky binary patching process, improving confidence in
patches that must work on the first try

Extracting specifications from the original binary

* Removes the need for users to manually write detailed
%pgaflcac’?ons, while being able to incorporate specifications
if desire

+ Does not require hardware models, thus enabling it to
handle complex/custom embedded hardware interfaces

Explainingbthe impact of changes in terms of differences in
observable behavior

* Makes explanations of patch effects understandable to
domain engineers without a background in verification or
reverse engineering; includes an interactive proof
visualization

Classifying changes as benign when they only improve the
program (e.g., removing known-bad behaV|ors¥

+ Improves confidence in bug fixes for high-value systems
and reduces the analysis burden for safe patches

Functions

Frame Condition
Computation

Hoare triples

Proof Construction

Proof tree -
Generates explanations from

path conditions in terms users

Verification can understand

L

Conditional

Counter

Equivalence
example

Analysis

Differential

Summary

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 42

Interactive equivalence proofs

\\\\\\ (SliceSurnary) call
£8x198601dc/Ex106091dc ©x186001dc,/0x100001dc
tatus(Success) Triple(FuncticnPredomain)
£x108001dc/Ox180001dc 0x1000010c/3x100801dc Ox1800019¢/0x1000019¢
tus(Success) plel nary) Triple
000010 /3x 103801 £x1080013c/0x10860019¢ 0x1000019¢/0x1009813¢
Status(Success) Status(Success)
£x1086013¢/0x1860019¢ 0x1000019¢/3x1003013¢
Tripl

® Proof is reified as a data structure that can be visualized
® |eaves are proof goals, where failures (red and yellow) represent
observable behavioral differences between the original and patched

binaries

® Each node corresponds roughly to a collection of basic blocks without

back edges

0x1000024¢/0x1000822C

0x1000024</3x1009022¢

0x10df4/0x10df4

Source: Ravitch, August 2021

A basic block that always
exhibits different behavior
in the patched binary; note
that this may be intended
(depending on the nature
of the patch)

canu
8x100001d: /6x190001dc

aaaaaaaaaaaaaaaaaa

Slice

Triple
0x10cf4/0x10cf4

Status(Conditional)

0x10cf4/0x10cf4

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Triple
£x1008623¢/0x1080023C

Status(Success)
8x1008023c/0x1080023c

A basic block that sometimes
exhibits different behavior in the
patched binary; this is
accompanied by a differential
summary that explains the
conditions under which the
behavior differs

The summary is a first-order
logical formula over function
inputs

43

Verification strategy

Automatically assembles individual framesinto a large
compositional equivalence proof

Note that PATE attempts to prove equivalence, but the
proof is not expected to succeed because the patch

should change the program’s behavior

The goal of the proof is to generate an explanation

Traverses the leaves of the prooftree (proof
obligations) in parallel, enabled by compositionality

Proof obligations are discharged automatically using
SMT solvers

Source: Ravitch, August 2021

Frame Condition
Computation

Hoare triples

Proof Construction

Proof tree

Verification

Counter
example

Frame conditions are all of the program state that must be equivalent after an
(original, patched) block pair execute in order for their effects to be equivalent:

. Registers
. Stack memory
. Other memory

The stack is treated specially to improve proof compositionality (i.e., it is
expected that stack frames are mostly isolated)

The frame computation is automated and based on inter-procedural context-
sensitive demand analysis; demanded values must be equivalent between the

original and patched programs (at observable events like system calls and
memory writes)

Conditional
Equivalence

Generates an explanation of the
conditions under which the patched
program exhibits different behavior

Attempts to classify changes as benign
where possible (e.g., if a patch removes
only bad behaviors from the program, it
is benign)

Bad behaviors are “free properties” (e.g.,
memory errors) or user-specified states
that should not be reachable

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 44

Patching a binary at a higher level of abstraction

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

45

Aarno Labs Multifocal Relational Analysis for Assured Micro-patching (MRAM)

Problem: Directly patching legacy,
stripped binaries is insanely difficult,
expensive and error-prone

Solution:
1. We lift binary to familiar C-like code
2. You directly patch the C-like code!

3. We automatically translate to a
minimally-invasive patch on the
binary

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

R1,[R7, #0x0]
R3,[R7, #0x0]
R3,R3,[R3, #0x5]
R3, [R7, #0xf]
R3,[R7, #0x4]
R3,R3,0x3
R3,R3,[R3, #0x0]
R3,R3

R3,R3,0x8

R2,R3

R3,[R7, #0x4]
R3,R3,0x2
R3,R3,[R3, #0x0]

Source: Gordon, August 2021

Patched

EXE

46

How to assure patch fixes the problem?

Problem: How do you assure the patch correctly
fixes the problem, does not break the desired
behavior and has no unintended consequences?

AMP MRAM Solution:
1. We analyze original versus patched binary

2. We precisely track the differences

3. We provide intuitive details of how program
actions differ with varying input

4. You decide if these details represent a correct
patch ... much easier than reasoning about
code!

AMP Challenge 3 Example

Global Analysis:
20 functions unchanged

* 1 function changed:
Original

Oxccd
var.0009 = arg2[5)
= 1[2] + arg1[3] << 8

var.0012 = arg [: var.0012 = arg1[2 [3]
var.0013 = (arg1[4] / 4) & 3 var.0013 = (argl[4] / 4) & 3
arg2[5] = var.0013 1= 0

arg2[5) = var.0013 1= 0

0xd30
0xd18 arg2[6] = 0 0xd18
arg2[4] =0
0xd20 0xd20
[4) [4]
92[4] arg2[4]
0000000000
92[6] arg2(6] =
xxxxxxxxxx
Select Input partition:
argl(3]=0 0 < argl[3] < 128

Oxccd
var.0009 = arg2[5)
= argl[2] +

Patched

argl[3] << 8

g

® 128 <= argl[3] < 256

Source: Gordan, August 2021

Multifocal Relational Analysis for Assured Micro-patching (MRAM)

Advanced binary abstract interpretation engine enables our techniques
* Recover source-level constructs from binary
* Invariants on the values of program variables

Progress on AMP Challenges:
» Automatically generated patches from manual changes on lifted code
* Minimal binary disruption: Average patch changes only 4 instructions
* Automated relational analyses denotes how functions have changed
* Structural invariant, control-flow invariant, etc.

* Automated relational analysis demonstrates how functions have changed
based on function input and program state / actions

PatcherX (Purdue U. / EPFL)

DARPA/TA3

Original binary

Patch (currently, as a source diff)

A 4

Source-level (or high-level IR)
Patch Verification

Patched Function Compiler

Outputs

Patched Function Injector

Patch assurance

TA1 Performers

Patched function source
(or high-level IR) and its location
in the original binary

Addresses of globals and functions used by the
patched function
in the original binary

Common functions’ locations
(e.g., printf, HAL, ...)

CFG of the original binary

-

Patched binary

y

Assembly-level Diffing

Assembly-level Patch Verification

\S

Targeted Fuzzer

Emulation

HALucinator

Source: Bianchi, May 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

49

PatcherX/DisPatch tool

* DisPatch

* Demonstration: Patching ArduPilot Drone Firmware
* Firmware dumping
* DisPatch workflow
* Validation: Roll rate reference enforcement
* Validation: Roll P parameter enforcement

Tool summary

 Patching (Semi-automated approach)
 Ability to semi-automatically “micropatch”
» Dealing with identifying space in the original binary and “linking” the patch
code with the original code
* Preserved
* Removal of the vulnerability
» Performance (speed w.r.t. runtime requirements)
» Static verification (potentially, human in the loop verification)
* Ability to compute a patch’s semantic effects
* Ability to visualize a patch’s semantic effects
* Dynamic verification
* Abllity to emulate and instrument the original and the patch code in the
different supported architecture
* Abillity to collect execution traces of the original and the patched binary
* Abllity to compare dynamically-collected traces, showing trace equivalency
when the original/patched binaries are provided with benign inputs
* Abllity to estimate timing of emulated execution traces

What if there is no compiler?

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

52

Context and motivation for satellite patching challenge
Verified, Incremental Binary Editing with Synthesis (VIBES) tool (Draper Labs)

Insecure Legacy

i BN BN B B . ------~
Legacy Systems ‘.
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

]

Y 4

Certified Binary
Update

Source-Level

--------------------.~

VIBES

Differential
@ Verification for
Non-interference

v

TA1 Targeted .
. Security Patch
Decompiler
ol BN B =
Re
’
I
I 0
Cardidat : Synthesis-based
andidate ! Compilation and
Decompiled T : .
1| Binary Editing
Programs and 0
N
Analyses K : *
\—/\ : Minimal-Change
: Secure Binary
!
S

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

Noninteference
Proof

Recertification and

Accreditation
Processes Ilﬁ
I

Source: Casinghino, August 2021

X4

~.-------_'

53

Goal: Usable front-end and AMP tool integration

&2 CodeBrowser: Test AMP CP2:/orig-debug.elf@ —] X
File Edit Analysis Graph Navigation Search Select SSE Window Help
B &= PRER JIDUL @ Add Code Ctrl+Shift+A i OB 1dn W @0
fiy Delete Code Ctrl+Shift+D R — =
: B B - |~ e ile. ~* h v L (g | [7
m"‘ Trees lid & &'| X If - O Replace Code Ctrl+Shift+S ‘ 2 | a | E |X Decomiiy S— : 4 ’ = ‘ Q ‘ a| v X
v (57 orig-debug.elf A ooM0dae | » Run Vibes Ctrl+Shift+R 3 é id rx braka. routine [achar *buff.5 ") ,§
._user_heap_stack 0800 o8 ar o sl local 18 ')- ’ void rx_brake_routine(uchar *buff,Bumper *bumper
bss 08000d 73 strb r2, Lagd] il
.data 08000db4 3 1dr 7,#0x0] =>local_18 5| byte bvarl;
fini_array 08000db6 Sb 7b r3, [r3,#0xd] 6| byte bVar2;
[init arrav ¥ 08000db8 00 2b cmp r3,#0x0 7| uint8_t brake switch;
< -~ | 08000dba 12 do beq LAB_08000de2 8| intl6 t speed value;
—l Program Tree x @ 0 | 08000dbc Oe 23 mov r3,#0xe 9 - -
d .| 0sooodbe fb 18 add r3,r7,r3 o ,
| 10 | bvarl = buff[3];
. & | || 08000dcO 00 22 mov r2,#0x0 o 11| bvar - buffl2].
bl : 08000dc2 Sb Se ldrsh ':f=>5peed—va1ue’[”' r2] 12 | bumper->brake_state = (bool) ("\x01' - (((int) (uint)buff[e
» § PendSV_Handler |4 || 08000dc4 00 2b cmp F3.2Gx8 13| if (bumper->brake_state == false) {
» § Reset_Handler '*ILﬂ 08000dc6 GF dd ble LAB_08000de8 14 bumper->flash_lock = false;
Be - o 08000dc8 3b 68 ldr r3, [r7,#0x0]=>local_18 Y - !
MU AL i || 08000dca la 7b 1drb r2, [r3,#0xc] 16| else 1
» ' m br: ' 3. [r7 -
» rx_brake_routm | : ggggggcc gz st? {:rb ';' {ré,#gxgi-ﬂocal_w 17 if ((0 < (short) ((ushort)bvarl * 0x100 + (ushort)bVar2
f ncsignal_routingy | ce r (eSS 18 (bumper->prev_brake_state != bumper->brake_state)) -
< Ty || | 08000ddO 9a 42 cmp vl 19 sumper->flash_lock = true;
-+~ | 08000dd2 09 dO beq LAB_08000de8 >0 bumper->f1ash_timer -0
Filter:) || 08000dd4 3b 68 ldr r3, [r7,#0x0]=>local_18 - } - :
: 08000dd6 01 22 mov r2,#0x1 5 }
i - ‘_," ne Manager w x — | 38000dd8 9a 73 Strb r2, [l"3.#0xe] _ - _ .
. ger | ' | 0s000dda 3b 68 ldr r3, [r7,#0x0]=>local_18 ;i’ E:?ﬂi;,’prev-brake-smte busper->brake_state; K
U R RN | | 08000dde 00 22 nov r2,#0x0 | | =N : g
v n: ddda 12 A1 ctr ro [r2 #0v10l
-« Vi Ty <« 7 T
v Data Types > r
A e O Console-serptng 2dix
» & BuiltinTypes
» I @orig-debug.elf
» i generic_clib
Filter: £2)
@I 08000dd8 mn<_brake_routine strb r2,[r3,#0xe] |_

DISTRIBUTION A: Approved for public release; Distribution is unlimited. Source: Casinghino, August 2021

From maintaining individual firmware(s) to patching at scale

55

E-BOSS: enhance SBOMs with flow metadata to trace flaws to triggers

Triggers ...

Feedback for maintenance
Remediation z
: he
: 7

: V

. —i Trigger
| Recovery
= U :
I .-.@-5§ Data flow QQ} Resolved — &&->agm Memory || -
dependencie allocation : Rapid .
é“‘l metadata s ; metadata lin apl :
metadata : Triage :
® B B ; ;
\ J ~— S Ot ¢
Existing build tools Q Cyber reasoning tools
to be extended crash info...extended and combined enabled by new metadata
<.@> = flow metadata @ t=o QEW algorithms and cyber reasoning z= recovered triggers

Keep advanced metadata in addition to symbols to effectively trace back flaw evidence to triggers
Enhance SBOMs with new types of rich metadata, enabling cyber reasoning for triage and remediation

Remediate with eSBOMs: Recover paths and triggers to crash site from crash snapshots (“crash dumps”), remediate by blocking
triggers once recovered

Block triggers and flows leading to quick remediation
DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 56

New tools to maintain software post-compilation & post-linking

a\,.r a.\,.r Resolved a@r— Memory
Data flow |

i&é metadata dependencies allocation
('Q\

metadata =mm Metadata
\ -)

Advanced metadata is generated at each stage of the build process, enables maintenance of binaries

Thank you!

Resilient
Software

Hyatt Regency Crystal City, Arlington, VA = N s

Save the Date 1 J%-* i R B U b D D Ul M

L Forglng a New Era of Cyber Resiliency

There is never enough time. Thank you for yours!

59

Appendix: DWARF links

The Almighty DWARF: A Trojan Horse for Program Analysis, Verification, and Recompilation, Philip Zucker
https://www.philipzucker.com/dwarf-patching/

DWARF as a Shared Reverse Engineering Format, Romain Thomas,
https://lief.re/blog/2025-05-27-dwarf-editor/

60

