A few notes on hacker math

“Fundamental research challenges hidden in plain sight”

Sergey Bratus, Nathan Dautenhahn, et al. H2HC 2024

Sergey’s disclaimers

* Obligatory: Any opinions are mine alone and don’t represent any of my
employers past or present.

e Substantive:

* This is a personal perspective on other people’s amazing work. All credit
goes to them, not me.

* This Is a tiny, biased sample of a great domain. Please tell me what | am
missing!

* Trivial: | am a former mathematician. | tend to see math everywhere :)

Hard hacking problems mean math
“Math pwns”

Hypothesis:

Biggest advances in hacking/cybersecurity come from nifty machine-readable
mathematical representations of data & code—which are friendly to efficient
algorithms.

Right representation => Math => Algorithm => Tool => Pwnage

Binary Diffing = Graph Isomorphism

Halvar Flake: BinDiff

Representation => algorithms => pwnage

 Diffing binaries is useful (e.g., for patches) but hard.
e Heuristics work, but only up to a point
* Insight: Graph isomorphism for basic block graphs!

e Basic blocks make graphs, matching graphs (“graph isomorphism”) is a hard
algorithmic problem, but has efficient subcases

o Cf. Joxean Koret’s Diaphora (https://github.com/joxeankoret/diaphora);
QuarksLab’s Diffing portal (https://diffing.quarkslab.com/)

e Also: Trail of Bits’ PolyFile and Graphtage for diffing and merging arbitrary binary
formats (https://blog.trailofbits.com/2020/08/28/graphtage/)

Decompilation: graph structuring

Cristina Cifuentes, Mother of decompilation

* (Going back from compiled binary is hard, heuristics only get so far

* Insight:

Reverse Compilation Techniques

Cristina Cifuentes

Bc.App.Sc — Computing Honours, QUT (1990)
Bc.AppSc — Computing, QUT (1989)

Submitted to the School of Computing Science
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

1 Introduction to Decompiling 1
1.1 Decompilers e e e e 1
1.2 Problems. e, 1

1.2.1 Recursive Undecidability 0000 2
1.2.2 The von Neumann Architecture 3
1.2.3 Self-modifyingcode o oo 3
1.2.4 Idioms e, 3
1.2.5 Virus and Trojan “tricks” 4
1.2.6 Architecture-dependent Restrictions 6
1.2.7 Subroutines included by the compiler and linker 6
1.3 The Phases of a Decompiler 7
1.3.1 Syntax Analysis 8
1.3.2 Semantic Analysis 9
1.3.3 Intermediate Code Generation 10
1.3.4 Control Flow Graph Generation 10
1.3.5 Data Flow Analysis00 10
1.3.6 Control Flow Analysis 11
1.3.7 Code Generation 11
1.4 The Grouping of Phases 0o 12
1.5 The Context of a Decompiler, 13
1.6 Uses of Decompilation 15

1.6.1 Legal Aspects L 15

Decompilation, 30 years later
Still making progress: Hex-Rays, Binary Ninja, Ghidra, FoxDec, ...

Ahoy SAILR! There is No Need to DREAM of C:
A Compiler-Aware Structuring Algorithm for Binary Decompilation

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron Miao,
Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, Ruoyu Wang
Arizona State University
{zbasque,atipriya,wfgibbs,judeo,derronm,tbao,doupe,yans,fishw} @ asu.edu

In contrast, SAILR does not blindly eliminate gotos and
insteaSAILR « More: https://mahaloz.re/dec-history-pt2
precisely reverts compiler transtormations tound to be the
cause of unstructurable code, which manifest as gotos in
decompilation. Of these transformations, certain compiler
optimizations and the gap between the decompiler and the
compiler play a significant role in unstructurability. SAILR
approaches a solution to both of these problems by improv-
ing the knowledge of the decompiler and reverting certain
optimizations.

Reverse Engineering ~ Math
Halvar Flake’s “RE 2006: New Challenges Need Changing Tools”

e #1and #2: Automated data structure recovery; building UML inheritance diagrams from binaries.

e Coupling the above with a debugger to allow run-time object inspection and editing.

e #3: Automated modularization of binaries (decomposing binaries to recover library structure /
groupings).

o #4: De-templating of heavily templated C++ code.

o #7. “Normal forms” for sequences of code (a Groebner-base equivalent?)

e #8: A visualization for callgraphs that shows each node as a Poset to make sure the order of
outgoing edges is visualized, too.

e 9#: Recovery of the internal state machine of a target.

e 10#:. Semantics-based FLIRT-style library identification.

Interestingly, challenge #5 - automated input data creation - is the one where most progress has
happened since the talk. To my great amusement, this talk suggests the use of SAT solvers to do it. At
that time, | was obviously unaware at the time of the research on SMT that is happening and will lead to
Vijay Ganesh’s great 2007/ thesis (and the release of STP).

https://thomasdullien.github.io/about/#2006

Modular framework for decompilation research
A new generation of tools for maintaining binaries

) Red Balloon
Security

RESOURCES

Represent firmware and
its sub-structures

1. Unpack
#Q/ COMPONENTS
Devi A 4 * Encapsulate logic
evice ugmente : i e
Firmware UNPACK ANALYZE MODIFY Firmware Codify reverse-engineer’s

knowledge

Integrate existing tools,

such as: m i

https://github.com/redballoonsecurity/ofrak

Modular framework for binary research

A new generation of tools for maintaining binaries

* CodeCut: https://github.com/JHUAPL/CodeCut

 Codehawk: https://github.com/static-analysis-engineering/codehawk

* VIBES: https://qgithub.com/draperlaboratory/VIBES

 Remill, Anvil, Relic LLVM lifters: https://github.com/lifting-bits/remill, https://
github.com/lifting-bits/anvill, https://github.com/lifting-bits/rellic

 PATE binary patch verifier: https://github.com/Galoisinc/pate
 MCTrace code release: https://github.com/Galoisinc/mctrace

* Binary analysis and rewriting tools used by PATE and MCTrace: https://github.com/
Galoislnc/macaw, reopt, what4, crucible, elf-edit, renovate, etc.

https://github.com/draperlaboratory/VIBES

“Weaponizing the Chomsky syntax hierarchy

Kaminsky/Sassaman/Patterson: Breaking X.509 => LangSec

 Why so many “input validation/sanitization” bugs in everything?
 What are programmers doing that they can’t ever get right?

* Insight: Inputs have grammars. Complex grammars are hard to parse.
Ambiguous grammars are impossible to validate. Sanitization is an anti-
pattern.

 Many bugs uncovered, hardened/correct parsers built

Safe Documents: Safely intake electronic data by creating
tools to build machine-readable unambiguous format
definitions and secure verified parsers

“Recognizer doesn’t match
the inPUt Ianguage” Asked 12 years, 4 months ago Modified 4 months ago Viewed 3.4m times

RegEx match open tags except XHTML self-contained tags

V Recause HTML can't be lord help us how can anyone survive this scourge using
parsed by regex. Regex is not a tool that can be used to regex to parse HTML has doomed humanity to an eternity of
correctly parse HTML. As | have answered in HTML-and- dread torture and security holes using regex as a tool to
regex questions here so many times before, the use of regex process HTML estaht?nlishes a breach between this world and
will not allow you to consume HTML. Regular expressions are the dread realm of ¢orrupt entities (like SGML entities, but
a tool that is insufficiently sophisticated to understand the more corrupt) a mere glimpse of the world of regex parsers
constructs employed by HTML. HTML is not a regular for HTML will instantly transport a programmer's
language and hence cannot be parsed by regular consciousness Into a world of ceaseless screaming, he
expressions. Regex queries are not equipped to break down comes;-thepestitentslithy regex-infection will devour your
HTML into its meaningful parts. so many times but it is not HTML parser, application and existence for all time like Visual
getting to me. Even enhanced irregular regular expressions Basic only worse he comes he comes;do not fight he comes,
as used by Perl are not up to the task of parsing HTML. You ’Ris unholy radiancé destroying all enl?'ghtenment, HTML tags
will never make me crack. HTML is a language of sufficient leakirig from your eyiéjike liquid pain, the song of régular
complexity that it cannot be parsed by regular expressions. expresston-parsiag-will extinguish the voices of mortal man
Even Jon Skeet cannot parse HTML using regular from the sphere | can see it can you see_ lt it is beautiful the
expressions. Every time you attempt to parse HTML with f inal snuf fing of the lies of Man ALL ISiOSTALL IS
regular expressions, the unholy child weeps the blood of LOST the pony he comes he eomes—h&eemes the ichor
virgins, anarsing permeates a?uchY FACE MY FACE °h god no NO NOQOO N©
HTML with regex summons tainted souls into the realm of %t@q."th an’ Ies gre not real ZALGO |g:|-QNy THE-PGNY
the living. HTML and regex go together like love, marriage, E‘ ’ﬁé(")ﬁ'? o :

I
ZONES - -
vX Y
~ *A
T

and ritual infanticide. The <center> cannot hold it is too late. FALE

A LangSec view of data languages

Complexity class

..

Recursively
enumerable

..

Examples

Javascript, Flash,
“benign programs”*

Model needed to correctly

parse/accept

Always-stopping
Turing machines

Complexity to verify
iImplementation

Security

..

Mildly context-
sensitive

Document & image formats,
PDF, MPEG, DNS, SMB,
ASN.1, X.509, actual XML

Subsets of document &
protocol formats

~ Linear-bounded automata
| ~ securable in general

(random-access memory)

Embedded pushdown
automata
“stack of stacks”

Likely not safe or

..

Pushdown automata
“stacks”

“Feasible, with

..

CALC-regular

“regular+length fields”

...

~ Finite state machines with

accumulators

Finite state machines

challenges”
Feasible Safe if
done
Known & efficient right

A LangSec view of data languages

Model needed to correctly

Complexity class Examples parse/accept Cc?mplexﬂy to _yyerlf Security
| implementation
"""""""" Recursively Javascript, Flash, . .
y . - Turing machine In general, impossible
_______________ enumerable ~ “benign programs™ 7 T
Recursive Some limited programs Always-stopping In general, impossible

Turing machines

- Document & image formats,
Context-sensitive PDF, MPEG, DNS, SMB,

' DU, C c W

..

Mildly context- Subsets of document & ~ Embecdded pushdown

Linear-bounded automata Likely not safe or

AN AL IO M N || = = aal=lanlfala = _.‘l arciarcles

sensitive | | automata “Research needed”
~ protocol formats | “stack of stacks” g
Context-free HTML*, JSON*, XML* Pushd,?wn au:c,omata Feasible, w!:ch
stacks challenges
CALC-regular | « ~ Finite state machines with .
“regular+length fields” Many TCP/IP prOtOCOIS accumulators Feasible Safe if
'' == done

Regular IPv4 Finite state machines Known & efficient right

Good news: this work has started!

Data Definition Languages (DDLs):

Parsley —=ef)

Parser combinators for binary

Parsley DDL (SRI) formats, in C. Yes, in C. What?

Don't look at me like that.

Hammer/VALARIN

(Special Circumstances, LLC/BAE)

1)

(4)

DaeDalus (Galois, Inc.) df-association/ .
Arlington PDF Model P <= PDF
T | (POF Associaion) safedocs
j rz';n j:'(" ;ﬁc‘::u;?'mw“.:au\:fmwi b GOy -Caro-or ado 5y
P e e il mma L - Artifacts from the DARPA-funded SafeDocs (’
B Microsoft Research Summ

research program

2021

“Demystifying PDF through a machine-readable definition,” Peter Wyatt, CTO of PDF Association
“Building a File Observatory for Secure Parser Development,” Tim Allison et al., NASA Jet Propulsion Lab
"Accessible Formal Methods for Verified Parser Development,” Letitia Li et al., BAE Systems

“RL-GRIT: Reinforcement Learning for Grammar Inference," Walt Woods et al., Galois Inc.

A few resources by

i * First ever machine-readable object model for PDF 1.6 through 2.0
A 500+ objects, 3,500+ keys, 5000 rules, 40 relationship predicate types

 Exposed multiple bugs in existing validators and parsers, 600+ deviations

* 100+ disambiguating candidate edits proposed and adopted into ISO PDF 2.0
standard (32000-2:2020, 1000 pages, 79 normative references)

Map of PDFs in the July 2020 Common Crawl Data -- : :
GeoLocation of URL/IPs via MaxMind’s GeolP City Database * First ever Internet-scale Observatory for a major

* : document format, global coverage
2)
504 298
N 1 199 1
R s SNy s Rusi g
174
A 487 CANADA @4 BN, 9oy B
¢ 926 QLK d62 B
e ° ased Oon dche vommonouraw
2 c : 2 y
1580929658 . 1239% 163 1gn2 1406 :
35071 ‘ 174" 501
263> | 87507 198
22032 G/ L RONIE e BULGARIA T T 7B EKISTAN
. (7293711 159590
103748 93 . g8 ' 7 c CHINA 30 . - . "] .
sl morocco v i L AL 94899
LIBYA SAUDI 3829 .
352‘ CUBAT e ¢ | N\ O~ | ARABIA 3183 TAIWAN ,
3654 LAOS
2032 GER [\ — ek 130 QS0
VTP 3 e ——)] CENTRAL ;
- AFRICAN SRI LANKA 32530 3707 | [] n -
attribution and estimated impac
6133 o 1658553 EUINCAR
y 5516068 39
ROLT ZIMBABWE 39 8

18524

385 URUGUAY

« « e« https://digitalcorpora.org/corpora/file-corpora/cc-
SEE—m—— main-2021-31-pdf-untruncated/ (sponsored by AWS)

© 2021 California Institute of Technology. Government sponsorship acknowledged. jpl.nasa.gov

https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/
https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/

Exploitation = proofs + programming

Exploits are proofs, exploitation is verification

UULILU.LL%4D/£L00ULLI.£L090ULL1Y

The idea is to identify security-critical
software bugs so they can be fixed first.

BY THANASSIS AVGERINOS, SANG KIL CHA, ALEXANDRE REBERT,
EDWARD J. SCHWARTZ, MAVERICK WOO, AND DAVID BRUMLEY

Automatic
Exploit
Generation

ATTACKERS COMMONLY EXPLOIT buggy programs to
break into computers. Security-critical bugs pave the
way for attackers to install trojans, propagate worms,
and use victim computers to send spam and launch
denial-of-service attacks. A direct way, therefore,

to make computers more secure is to find security-
critical bues before thev are exnloited bv attackers.

How would you go about finding the un-
known exploitable ones that still lurk?

Given a program, the automatic ex-
ploit generation (AEG) research chal-
lenge is to both automatically find
bugs and generate working exploits.
The generated exploits unambigu-
ously demonstrate a bug is security-
critical. Successful AEG solutions pro-
vide concrete, actionable information
to help developers decide which bugs
to fix first.

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”
property, and the “verification” pro-
cess becomes one of finding a pro-
gram path where the exploitability
property holds. Casting AEG in a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based
approach guarantees sound analysis,
and automatically generating an ex-
ploit provides proof that the reported
bug is security-critical.

Verification involves many well-
known scalability challenges, several
of which are exacerbated in AEG. Each

“Verification .. becomes finding a program path [with] the exploitability property”

Our research team and others cast
AEG as a program-verification task
but with a twist (see the sidebar “His-
tory of AEG”). Traditional verification
takes a program and a specification of
safety as inputs and verifies the pro-
gram satisfies the safety specification.
The twist is we replace typical safety
properties with an “exploitability”
property, and the “verification” pro-

cess becomes one of finding a pro-
oram path where thel exploitabili
i

olds. Casting AEG 1n a veri-
fication framework ensures AEG tech-
niques are based on a firm theoretic
foundation. The verification-based

Automated Exploitation Grand Challenge

Julien Vanegue’s Challenge Problems

The Automated Exploitation A Program for Automated Exploitation

Grand Challenge
| | * Inspired by David Hilbert and many ones after
Tales of Weird Machines him, we define a list of problems whose solutions

pave the way for years to come in the realm of
automated low-level software analysis.

 The Grand Challenge consists of a set of 11
problems in the area of vulnerability discovery
and exploitation that vary in scope and
applicability.

* Most problems relate to discovering and
combining exploit primitives to achieve elevation
of privilege.

Julien Vanegue
julien.vanegue@gmail.com

- ;T\) ' & ay o o | JE & oalaVYala C‘q -~ g~ :\ -~ - i/ " ek] :
H2HC conference, Sao Paulo, Brazil

https://openwall.info/wiki/ _media/people/|vanegue/files/aegc vanegue.pdf

https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

What are ‘exploitability properties’?
Hypothesis: primitives add up to generic programmability

% https://seclists.org/bugtrag/2000/Nov/32

Site Search

Here I present a way to code any program, or almost any program,
Bugtraq mailing list archives in a way such that it can be fetched into a buffer overflow in a platform

@By Datc @ BBy Thread €3 where the stack (and any other place in memory, but libc) is executable:

List Archive Search

Re: Future of buffer overflows ?

From: Gerardo Richarte <core lists.bugtraq () CORE-SDI COM>

pate: o, 30 L0 215526 050 In 7-8 more years, we will know this as ROP,

Thomas Dullien wrote:

*
So it is possible to have readable, non-executable memory pages, at a JOP, and many Other OP

not too bad performance hit of up to 10%. This is very cool.

This is not a new concept. It's been out there for a while now...

Does this mean buffer overflows and format string vulnerabilities are
dead ?

I'lLL hung from here.
As you said, this is not true, it's just a little trickier to u

explost 3 "Teturn aiaress on the stack” burfer overflow bug https://seclists.org/bugtragq/2000/Nov/32
You showed us a way to do it (by returning to exec() with "pre " -

pushed" arguments)

here I'll show two different approaches to exploit this bugs in
"protected" systems.

Exploitation = programming + proofs

General-purpose programmability via exploit primitives is a recurring pattern

Stack
(late 1990s — mid 2000s)
Adversarial reuse of C/C++ control flow
implementation patterns

ROP
ARM

other CPUs

ROP
MIPS

ROP

JOP

{ Heap exploits W

x86 DL libc malloc J

Return-Oriented

Programming SROP other C/C++
abstractions
COOP
JOP Jump
SROP = Signal Oriented Programming
COOP Counterfeit Object

|

Heap exploits

Win32

Heap exploits 7

[JEmalloc
4 N\
Double-free,
triple-free
. J
4 I
Heap "Feng-
shui"
N\ J
Heap
starvation

Heap
(early 2000s — mid 2010s)
Adversarial reuse of memory
management patterns

CPU
(late 2010s — now)
Meltdown and Spectre types of vulnerabilities
(currently 40+ and counting)

PHT-CA-IP %)

Heap exploits
Windows LFH

PHT-CA-OP %)

%

7 OF
mi “-"’ ‘f“" . Cross-address-space
e -IP [48,50
T ame-address-space)YEPHT-SA IP [48,50])

PHT-SA-OP x)

|

|

Specure-BTB
Fil'efOX heap/ Spectre-RSB Cross-address-space BTB.CA.]P[U:SU‘)
JS eXp|0itS Spectre-STL [29]) Same-address-space iatontdb,)
BTB-SA-IP %)
Cross-address-space BTB-SA-OP [13])
Ch rome,vs Transie.:ll Same-address-space RSB-CA-IP [52,59])
cause’? -
heap/GC raul Meltdown-US [56] RSB-CA-OP [52))
n N

RSB-SA-IP [59
Meltdown-P [85,90]) (591)

RSB-SA-OP [52,59])

[Mclldown-l_\'pc Meltdown-RW [45])

More abuses of
dynamic memory
management systen
across applications,
libraries, and CPUs

Meltdown-MPX [401)

Melidown-BR

Meltdown-GP [8,35)) Meltdown-BND %)

USENIX WOOT 2013

“Weird Machines” in ELF: A Spotlight on the Underappreciated Metadata

Rebecca Shapiro Sergey Bratus
Dartmouth College Dartmouth College
USENIX WOOT 2011

Exploiting the hard-working DWARF: Trojan and Exploit Techniques With
No Native Executable Code

James Oakley, Sergey Bratus

USENIX WOOT 2013

The Page-Fault Weird Machine: Lessons in Instruction-less Computation

Julian Bangert, Sergey Bratus, Rebecca Shapiro, Sean W. Smith

Sean W. Smith
Dartmouth College

Weird machines: mostly harmless?

Core OS mechanisms are
unexpectedly Turing-complete as
attacker’s input-driven agents

e ELF loader/relocator is T.-cC.

e PE and Mach-0O are too
(cf. LOCREATE, Uninformed 6:3)

* So is the DWARF exception handler
VM, helpfully linked into
C/C++ programs

* So is the x86 MMU on its configs
(GDT + IDT + TSS + PTESs)

Defining the common exploitability pattern

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Received 15 August 2017, revised 3 November 2017; accepted 11 December 2017.
Date of publication 19 December 2017; date of current version 9 June 2020.

Digital Object Identifier 10.1109/TETC.2017.2785299

Weird Machines, Exploitability, and
Provable Unexploitability

THOMAS DULLIEN “, (Member, IEEE)

The author is with the Google’s Project Zero, Zurich 8002, Switzerland
CORRESPONDING AUTHOR: T. F. DULLIEN (thomas.dullien @ gmail.com)

ABSTRACT The concept of exploit is central to computer security, particularly in the context of memory
corruptions. Yet, in spite of the centrality of the concept and voluminous descriptions of various exploitation
techniques or countermeasures, a good theoretical framework for describing and reasoning about exploitation
has not yet been put forward. A body of concepts and folk theorems exists in the community of exploitation
practitioners; unfortunately, these concepts are rarely written down or made sufficiently precise for people out-
side of this community to benefit from them. This paper clarifies a number of these concepts, provides a clear
definition of exploit, a clear definition of the concept of a weird machine, and how programming of a weird
machine leads to exploitation. The papers also shows, somewhat counterintuitively, that it is feasible to design
some software in a way that even powerful attackers—with the ability to corrupt memory once—cannot gain
an advantage. The approach in this paper is focused on memory corruptions. While it can be applied to many
security vulnerabilities introduced by other programming mistakes, it does not address side channel attacks,
protocol weaknesses, or security problems that are present by design.

A brief history:
https://weirdmachines.qgitlab.io/

Not so harmless: Spectre is more than a side-channel

NDSS 2019
ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler Ian Martiny Eric Wustrow
University of Colorado Boulder University of Colorado Boulder University of Colorado Boulder
jack.wampler@colorado.edu ian.martiny @colorado.edu ewust@colorado.edu

ExSpectre shares many properties with weird machines—
a machine which takes advantage of bugs or unexpected
idiosyncracies in existing systems to perform arbitrary com-
putation [6], [7]. In particular ExSpectre showcases the ability
to use CPU speculation to compute.

ASPLOS 2021, Distinguished paper

Computing with Time: Microarchitectural Weird Machines

Dmitry Evtyushkin Thomas Benjamin Jesse Elwell

devtyushkin@wm.edu tbenjamin@perspectalabs.com jelwell@perspectalabs.com
William & Mary Perspecta Labs Perspecta Labs
United States United States United States
Jeffrey A. Eitel Angelo Sapello Abhrajit Ghosh
jeitel@perspectalabs.com asapello@perspectalabs.com aghosh@perspectalabs.com
Perspecta Labs Perspecta Labs Perspecta Labs
United States United States United States

Modern CPU optimization layers
contain enough shared state and
logic to form a transient, mostly
unobservable emergent computing/

execution environment

Interactions between different CPU
optimizations’ internal states can
serve as logical gates and circuits
adding up to a virtual CPU

* Programmed by seemingly meaningless
series of memory reads and writes

* Results are read off as timings of races

No longer just theory: IMessage exploitation

Enter the BlastDoor sandbox

From single click to zero-click

®e0ee ctisalat = 0Te R | eee ctisalat = 2:41PM
< Back (6) +45 609910233 " Messages (6) InfoSMS L
bLal cades e Bagan 5 opilyle] cadad e Basan 51l

https:// : Ysall (ysau o 3
Sms.webadv.co/
3589003s/

https:// : dgall Hsaw o
sms.webadv.co/
9573305s/

= MIEGIEDB]

BACKCHANNEL BUSINESS CULTURE GEAR MORE v

SIGN IN SUBSCRIBE

LILY HAY NEWMAN SECURITY AUG 7, 2813 5:87 PM

Hackers Can Break Into an iPhone Just
by Sending a Text

You don't even have to click anything.

apsd
Receive push message from :
Apple's servers and extract IDS
payload
IMTransferAgent
Yes
Download attachment from iCloud, <
decrypt, and store on disk in
lemporary direclory
>
imagent
Send delivery receipt I |

identityservicesd

Decrypt payload with Message
private key and forward to imagent

imagent

Does the message contan
attachments?

lNo

imagent

b

Does the message contan
senalized plugin data (eg. a
URL with a preview image)?

1No

IMDPersistenceAgent

N

Store message in database and
trigger user notification

Yes
ﬁﬂ

imagent

Send payload o BlastDoor service
for “defusion”

MessagesBlastDoorService
Buid Message object by decoding

message plist, parsing message
text XML, and decoding
NSSerializer data

IMTranscoderaAgent

Send plugin payload to BlastDoor
service for “defusion”

MessagesBlastDoorService

Decode plugin NSSerializer data

and generate preview message
from it

WM in iMessage’s looping GlFs

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

* Pass received files with .gif extension to ImagelO library wahren Sie fiir Ihrg Unterl
.) L
* ImagelO ignores extension and guesses file type [exploit passes a PDF file] ("“"&“ h"my/"w/ws
: . . . EEEEE
 CoreGraphics PDF parser has an integer overflow, but no JavaScript to exploit SEEE
it e &
. . . " H
e ...butit has JBIG2 decompression of glyphs, with XOR logic over memory X B
areas O)
R
 ...which will apply out of buffer’s bounds, thanks to the overflow; Bubeffiited arigmal " difisance

* this makes logical gates. Logical gates make a virtual machine as fast and A 1
reliable as JavaScript! 5

You can now provide as input a sequence of JBIG2 segment commands which implement a
sequence of logical bit operations to apply to the page. And since the page buffer has been
unbounded those bit operations can operate on arbitrary memory.

Fully automated exploitation & patching?

CHALLENGE

DARPA and ARPA-H’s Artificial Intelligence Cyber Challenge (AIXCC) brings together the foremost experts
in AI and cybersecurity to safeguard the software critical to all Americans.

AIxCC is excited to have Anthropic, Google, Microsoft, OpenAl, the Linux Foundation, the Open Source
Security Foundation, Black Hat USA, and DEF CON as collaborators in this effort.

Where else Is hacker math
hiding?

“IRs are magic”

Intermediate Representations make analysis go

GCC Overview

» GCC AST: language frontends produce GENERIC

» Data structure: tree

PaX - gcc plugins galore

» Plugins can implement new attributes and pragmas, inspect
structure declarations and variable definitions (gcc 4.6+)

» GCC IR #1: GIMPLE
PaX Team » Static Single Assignment (SSA) based representation
» First set of optimization/transformation passes runs on
GIMPLE (-fdump-ipa-all, -fdump-tree-all)
» Data structures: cgraph_node, function, basic_block,
H2HC 2013.10.05 ERE e
» GCCIR #2: RTL
» GIMPLE is lowered to RTL (pre-SSA gcc had only this)
» Second set of optimization passes runs on RTL
(-fdump-rtl-all)
» Data structures: rtx, tree

* GrSecurity/PaX made revolutionary Linux kernel hardening with compiler
plugins — operating over GCC IRs

Towers of Intermediate Representations

“IRs are useful. What’s an IR?”

* |Rs are everywhere

 |LLVM passes ~ IRs, MLIR

* Ghidra uses P-code

 Angr uses VEX

* Binary Ninja has 3 public IRs
 But what is an IR?

* Trail of Bits: why only one?

Finding bugs in C code with
Multi-Level IR and VAST

POST JUNE 15, 2023 1T COMMENT

Intermediate languages (IRs) are what reverse engineers and vulnerability
researchers use to see the forest for the trees. IRs are used to view
programs at different abstraction layers, so that analysis can understand
both low-level code aberrations and higher levels of flawed logic mistakes.
The setback is that bug-finding tools are often pigeonholed into choosing a
specific IR, because bugs don’t uniformly exist across abstraction levels.

We developed a new tool called VAST that solves this problem by providing
a “tower of IRs,” allowing a program analysis to start at the best-fit
representation for the analysis goal, then work upwards or downwards as
needed. For instance, an analyst may want to do one of three things with a
stack-based buffer overflow. (1) Identify it. (2) Classify it. (3) Remediate it.

Bugs span the semantic gap, and so should analyses!
Move up and down the tower of IRs as needed

Now comes choosing the right IR. Some bug properties are only apparent
at certain abstraction levels. A buffer overflow is easily identified in LLVM
IR, because stack buffers in LLVM IR are highly characteristic (i.e., created
via the alloca instruction). This is the “best-fit” IR for identification.

For classification, a butfer overflow can go from a common bug to a
security threat if the buffer sits near sensitive data in program memory.
This onlv becomes clear below the LLVM IR level. near or at the machine
code level, where buffers are fused together with other sensitive

information, forming a “stack frame.”

The last part of the story is communication and remediation. The reason
why the buffer overflowed in the first place can be a side-effect of a type
conversion on a buffer index that was self-evident in the program’s
abstract syntax tree (AST), the highest level IR. Connecting these facts
together used to be impossible, but VAST’s tower of IRs is changing this.
Bugs span the semantic gap, and so should analyses.

Buffer overflows: LLVM IR
Adjacency: below LLVM IR

Root causes like out-of-type
references: AST

ToB solution: VAST/Multiplier

* Get all the IRs (as dialects of
MLIR)

 “Move up or down as needed”

A tower of IRs

A sequence of compatible, interoperating IRs

| 1
IR 3 (“High”’ AST) :"
-

| |
W IR 2 (“Medium”) ‘
e S /J)
yl‘// s == ——
IR 1 (“Low”) |
e —————— /JJ
[)
IR 0 (“Micro”) 2‘
J

e e e e e ——— — = =

Type inference, type confusion

Abstraction-reusing exploit primitives

Low-level memory corruption,
SmthHammer, SmthSpectre

“For my analyses, I'd rather use DSLSs”

Hard problems remain hard, but scalability increases

Program Analysis for Domain Specific Language Extraction

of Legacy Software
DARPA - Jul 2021 https://www.cs.purdue.edu/homes/xyzhang/

Prof. Xiangyu Zhang, Purdue U.

As part of the DARPA V-SPELLS program, this project aims to automate
, - , _ implementation to post hoc domain specific models, providing a new
domain specific program analysis. There are inherently hard challenges

In general program analysis, such ag handling pointers, indirect calls,

constructing loop invariants, and decompilation,jdespite the steady semantics become clean and easy to reason. With lifted domain models,
progress the community has been making. Fuzzing techniques and bug ~ gomain specific properties can be easily checked. This allows existing

finding tools are still limited to finding| low level bugs such as memory fuzzers to find complex logical bugs, formal methods can be substantially

perspective to these hard problems. Instead of dealing with the low level

implementation details, we abstract them away such that their high-level

bugs, and formal methods often require substantial human efforts to simplified and automated. We are interested in lifting implementations in
translate domain specific and application specific properties down to various domains such as parsers, network protocols, robotic systems,
annotations to implementation artifacts. The project focuses o smart contracts, and even binary executables.

implementation to post hoc domain specific models, providing a new

Lifting gets CVEs that fuzzing misses

50+ new CVEs in network protocols

Lifting Network Protocol Implementation to Precise Format
Specification with Security Applications

Qingkai Shi Junyang Shao Yapeng Ye
Purdue University Purdue University Purdue University
West Lafayette, USA West Lafayette, USA West Lafayette, USA
shi553@purdue.edu shao156@purdue.edu ye203@purdue.edu

Mingwei Zheng Xiangyu Zhang
Purdue University Purdue University
West Lafayette, USA West Lafayette, USA
zheng618@purdue.edu xyzhang@cs.purdue.edu

Extracting Protocol Format as State Machine via Controlled Static Loop Analysis

Qingkai Shi Xiangzhe Xu Xiangyu Zhang
Purdue University Purdue University Purdue University

We implement our method as a tool, namely N etlifte
It is implemented on top of the
LLVM (12.0.0) compiler infrastructure [50] and the Z3 (4.8.12) SMT
solver [37]. The source code of a protocol is compiled into the LLVM
bitcode, where we perform our static analysis. In the analysis, Z3

is used to represent abstract values as symbolic expressions and
solve path constraints. All experiments are run on a Macbook Pro

-Our new techniquefextracts a sound state machinefby

regarding each loop iteration as a state and the dependency be-
tween loop iterations as state transitions. To achieve high, 1.e.,
path-sensitive, precision but avoid path explosion, the analysis
1s controlled to merge as many paths as possible based on
carefully-designed rules. The evaluation results show that we
can infer a state machine and, thus, the message formats, in
five minutes with over 90% precision and recall.

Table 1: Protocols and Their Codebases for Evaluation

Name Codebase (ill(z)i) '{slencl.; Description
L2CAP linux/bluetooth [7] 38 12 logical link ctrl and adaptation proto.
SMP linux/bluetooth [7] 12 2 low energy security manager proto.
APDU opensc [14] 3 3 application proto. data unit
OSDP libosdp [5] 14 27 open supervised device proto.
SSQ libssq [8] 8 1 source server query proto.
TCP/1P lwip [6] 41 53 transport control & internet proto.
IGMP/IP lwip [6. 17 16 internet group mgmt. & internet proto.
QUIC ngtcp2 [4) 59 11 general-purpose transport layer proto.
BABEL frrouting [3] 7 9 a distance-vector routing proto.
IS-IS frrouting [3] 22 6 intermediate system (IS) to IS proto.

0.8

0.6 =
= =
0.4 f

0.2 H
0

L2CAP SMP APDU OSDP SSQ TCP/IP IGMP/IP QUIC BABEL ISIS
O NetLifter ONetPlier O Tupni

Figure 13: The y-axis is the number of covered branches
normalized to one. It shows the branch coverage averaged
over twenty runs with a 95% confidence interval.

A2MP
BNEP
CMTP
HIDP
UDP
ICMP
DHCP
ICMP6

DHCP6

BGP
LDP
BFD

EIGRP

OSPF2
OSPF3
RIP1
RIP2
RIPng

Codebases chosen by
recent activity,
presence of fuzzing

harness

50+ new CVEs claimed

linux/bluetooth [7]
linux/bluetooth [7]
linux/bluetooth [7]
linux/bluetooth [7]
lwip [6]

lwip [6]

lwip [6]

lwip [6]

lwip [6]

frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]
frrouting [3]

== W N

33

43
54
51

17
12
21
11
14
16
13
15
41

amp manager proto.

BT network encapsulation proto.
c-apl message transport proto.
human interface device proto.
user datagram proto.

internet control message proto.
dynamic host configuration proto.
internet control message proto. v6
dynamic host configuration proto. v6
border gateway proto.

label distribution proto.
bidirectional forwarding detection
virtual router redundancy proto.
interior gateway routing proto.
next hop resolution proto.

open shortest path first v2

open shortest path first v3

routing information proto. v1
routing information proto. v2
routing information proto. for ip6

A tree of IRs? A lattice of IRs?

“A sufficiently lifted IR is indistinguishable from a DSL”

I
IR 1 (“Low”, pointers/aliasing) ?‘
|

o= — = — — g — = — === - —_— _ — — _ — =

IR 0 (“Micro”)

e e — — —— — — — .

Reverse Engineering ~ IR tower/tree lifting?
Halvar’s “RE 2006: New Challenges Need Changing Tools” talk

e #1and #2: Automated data structure recovery; building UML inheritance diagrams from binaries. *

e Coupling the above with a debugger to allow run-time object inspection and editing.

o #3:. Automated modularization of binaries (decomposing binaries to recover library structure /*
groupings).

o #4: De-templating of heavily templated C++ code.

o #7. “Normal forms” for sequences of code (a Groebner-base equivalent?)

e #8: A visualization for callgraphs that shows each node as a Poset to make sure the order of
outgoing edges is visualized, too.

e 9#: Recovery of the internal state machine of a target. *

e 10#. Semantics-based FLIRT-style library identification. *

Interestingly, challenge #5 - automated input data creation - is the one where most progress has
happened since the talk. To my great amusement, this talk suggests the use of SAT solvers to do it. At
that time, | was obviously unaware at the time of the research on SMT that is happening and will lead to
Vijay Ganesh’s great 2007/ thesis (and the release of STP).

https://thomasdullien.github.io/about/#2006

Bottom-up verification

Lifting from a sound foundation

libLISA: Instruction Discovery and Analysis on x86-64

JOS CRAAIJO, Open Universiteit, Netherlands
FREEK VERBEEK, Open Universiteit, Netherlands and Virginia Tech, USA
BINOY RAVINDRAN, Virginia Tech, USA

Even though heavily researched, a full formal model of the x86-64 instruction set is still not available. We
presen{ LIBLISA, a tool for automated discovery and analysis of the ISA of a CPU. [['his produces the most
extensivp formal x86-64 model to date, with over 118 000 different instruction groups. [The process requires as

little human specitication as possible: specitically, we do not rely on a human-written (dis)assembler to dictate
which instructions are executable on a given CPU, or what their in- and outputs are. The generated model is
CPU-specific: behavior that is “undefined” is synthesized for the current machine. Producing models for five
different x86-64 machines, we mutually compare them, discover undocumented instructions, and generate
instruction sequences that are CPU-specific. Experimental evaluation shows that we enumerate virtually
all instructions within scope, that the instructions’ semantics are correct w.r.t. existing work, and that we
improve existing work by exposing bugs in their handwritten models.

Recompilable/patchable/verifiable IRs

Recompilable disassembly with proofs

Verifiably Correct Lifting of Position-Independent x86-64 Binaries
to Symbolized Assembly

Freek Verbeek
freek@vt.edu

We present an approach to lift position-independent x86-64 binaries
to symbolized NASM. Symbolization is a decompilation step that
enables binary patching: functions can be modified, and instruc-
tions can be interspersed. Moreover, it is the first abstraction step
in a larger decompilation chain. The produced NASM is recom-
pilable, and we extensively test the recompiled binaries to see if
they exhibit the same behavior as the original ones. In addition
to testing, the produced NASM is accompanied with a certificate,
constructed in such a way that if all theorems in the certificate
hold, symbolization has occurred correctly. The original and recom-
piled binary are lifted again with a third-party decompiler (Ghidra).

Nico Naus Binoy Ravindran
nico.naus@ou.nl binoy@vt.edu
“source-like”
Binary NASM LLVM IR code
T T T T
T | | |
Assembly

(1) The first lifting tool for lifting PIE x86-64 ELF binaries to
symbolized NASM;

(2) An approach to formal validation of recompiled binaries;

(3) A demonstration of use-cases for binary patching enabled
by symbolized NASM lifting;

(4) Experimental results comparing original and recompiled
binaries.

Is this the year of the first-class™
IRs?

() Machine-readably defined as mathematical objects friendly to efficient algorithms

Right representation => Math => Algorithm => Tool => Pwnage

Hyperplanes

An experimental system for Interconnected IRs

Slides and examples to be posted be at https://hyperplanes.io/talks/h2hc/

Memorizer

Object-granular instrumentation of the Linux 6.6 kernels

o Stable, available with build instructions, manuals, and usage examples

o https://qgithub.com/ITI/memorizer/

* Docs: https://github.com/ITlI/memorizer/tree/linux-6.6.y-memorizer-
dev/Documentation

* Builds for Qemu, x86-64, InitRAM

https://github.com/ITI/memorizer/
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation

Thank you

A -
)

‘. h
BV
»

. 1 .‘ . “'-‘ . : . be . ” »
L'y LA . ', P 4 b M My > . e
:) . ﬁ o Yk SEONY 7 7”' 1.’“‘ o ¥ p
Vil Y m’l .."-:««P’S:« ot S ' PEENEH 2 3 N -«.&

o~

