
Sergey Bratus, Nathan Dautenhahn, et al. H2HC 2024

A few notes on hacker math
“Fundamental research challenges hidden in plain sight”

Sergey’s disclaimers

• Obligatory: Any opinions are mine alone and don’t represent any of my
employers past or present.

• Substantive:

• This is a personal perspective on other people’s amazing work. All credit
goes to them, not me.

• This is a tiny, biased sample of a great domain. Please tell me what I am
missing!

• Trivial: I am a former mathematician. I tend to see math everywhere :)

Hard hacking problems mean math
“Math pwns”

Hypothesis:

Biggest advances in hacking/cybersecurity come from nifty machine-readable
mathematical representations of data & code—which are friendly to efficient
algorithms.

Right representation => Math => Algorithm => Tool => Pwnage

Binary Diffing = Graph Isomorphism
Halvar Flake: BinDiff

• Diffing binaries is useful (e.g., for patches) but hard.

• Heuristics work, but only up to a point

• Insight: Graph isomorphism for basic block graphs!

• Basic blocks make graphs, matching graphs (“graph isomorphism”) is a hard
algorithmic problem, but has efficient subcases

• Cf. Joxean Koret’s Diaphora (https://github.com/joxeankoret/diaphora);
QuarksLab’s Diffing portal (https://diffing.quarkslab.com/)

• Also: Trail of Bits’ PolyFile and Graphtage for diffing and merging arbitrary binary
formats

Representation => algorithms => pwnage

(https://blog.trailofbits.com/2020/08/28/graphtage/)

Decompilation: graph structuring
Cristina Cifuentes, Mother of decompilation

• Going back from compiled binary is hard, heuristics only get so far

• Insight:

Decompilation, 30 years later
Still making progress: Hex-Rays, Binary Ninja, Ghidra, FoxDec, …

• More: https://mahaloz.re/dec-history-pt2

Reverse Engineering ~ Math
Halvar Flake’s “RE 2006: New Challenges Need Changing Tools”

https://thomasdullien.github.io/about/#2006

Modular framework for decompilation research
A new generation of tools for maintaining binaries

https://github.com/redballoonsecurity/ofrak

Modular framework for binary research
A new generation of tools for maintaining binaries

• CodeCut: https://github.com/JHUAPL/CodeCut

• Codehawk: https://github.com/static-analysis-engineering/codehawk

• VIBES: https://github.com/draperlaboratory/VIBES

• Remill, Anvil, Relic LLVM lifters: https://github.com/lifting-bits/remill, https://
github.com/lifting-bits/anvill, https://github.com/lifting-bits/rellic

• PATE binary patch verifier: https://github.com/GaloisInc/pate

• MCTrace code release: https://github.com/GaloisInc/mctrace

• Binary analysis and rewriting tools used by PATE and MCTrace: https://github.com/
GaloisInc/macaw, reopt, what4, crucible, elf-edit, renovate, etc.

https://github.com/draperlaboratory/VIBES

“Weaponizing the Chomsky syntax hierarchy
Kaminsky/Sassaman/Patterson: Breaking X.509 => LangSec

• Why so many “input validation/sanitization” bugs in everything?

• What are programmers doing that they can’t ever get right?

• Insight: Inputs have grammars. Complex grammars are hard to parse.
Ambiguous grammars are impossible to validate. Sanitization is an anti-
pattern.

• Many bugs uncovered, hardened/correct parsers built

Safe Documents: Safely intake electronic data by creating
tools to build machine-readable unambiguous format
definitions and secure verified parsers

“Recognizer doesn’t match
the input language”

A LangSec view of data languages

Complexity class Examples
Model needed to correctly

parse/accept Complexity to verify
implementation Security

Recursively
enumerable

Javascript, Flash,
“benign programs”* Turing machine In general, impossible

Gift to
attackers

Recursive Some limited programs Always-stopping
Turing machines In general, impossible

Context-sensitive
Document & image formats,

PDF, MPEG, DNS, SMB,
 ASN.1, X.509, actual XML

Linear-bounded automata
(random-access memory)

Likely not safe or
securable in general

Mildly context-
sensitive

Subsets of document &
protocol formats

Embedded pushdown
automata

“stack of stacks”
“Research needed”

Context-free HTML*, JSON*, XML* Pushdown automata
”stacks”

“Feasible, with
challenges”

CALC-regular
“regular+length fields” Many TCP/IP* protocols Finite state machines with

accumulators Feasible Safe if
done
rightRegular IPv4 Finite state machines Known & efficient

A LangSec view of data languages

Complexity class Examples
Model needed to correctly

parse/accept Complexity to verify
implementation Security

Recursively
enumerable

Javascript, Flash,
“benign programs”* Turing machine In general, impossible

Gift to
attackers

Recursive Some limited programs Always-stopping
Turing machines In general, impossible

Context-sensitive
Document & image formats,

PDF, MPEG, DNS, SMB,
 ASN.1, X.509, actual XML

Linear-bounded automata
(random-access memory)

Likely not safe or
securable in general

Mildly context-
sensitive

Subsets of document &
protocol formats

Embedded pushdown
automata

“stack of stacks”
“Research needed”

Context-free HTML*, JSON*, XML* Pushdown automata
”stacks”

“Feasible, with
challenges”

CALC-regular
“regular+length fields” Many TCP/IP* protocols Finite state machines with

accumulators Feasible Safe if
done
rightRegular IPv4 Finite state machines Known & efficient

Good news: this work has started!

“Demystifying PDF through a machine-readable definition,” Peter Wyatt, CTO of PDF Association
“Building a File Observatory for Secure Parser Development,” Tim Allison et al., NASA Jet Propulsion Lab

"Accessible Formal Methods for Verified Parser Development,” Letitia Li et al., BAE Systems 
“RL-GRIT: Reinforcement Learning for Grammar Inference," Walt Woods et al., Galois Inc.

Data Definition Languages (DDLs):

• First ever machine-readable object model for PDF 1.6 through 2.0  
 500+ objects, 3,500+ keys, 5000 rules, 40 relationship predicate types

• Exposed multiple bugs in existing validators and parsers, 600+ deviations

• 100+ disambiguating candidate edits proposed and adopted into ISO PDF 2.0
standard (32000-2:2020, 1000 pages, 79 normative references)

• First ever Internet-scale observatory for a major
document format, global coverage

• Based on Apache CommonCrawl, AWS

• Automatic identification of malformations, with
attribution and estimated impact

• https://digitalcorpora.org/corpora/file-corpora/cc-
main-2021-31-pdf-untruncated/ (sponsored by AWS)

A few resources by

https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/
https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/

Exploitation = proofs + programming
Exploits are proofs, exploitation is verification

“Verification .. becomes finding a program path [with] the exploitability property”

Automated Exploitation Grand Challenge
Julien Vanegue’s Challenge Problems

https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

What are ‘exploitability properties’?
Hypothesis: primitives add up to generic programmability

In 7-8 more years, we will know this as ROP,
JOP, and many other *OP

https://seclists.org/bugtraq/2000/Nov/32

Exploitation = programming + proofs
General-purpose programmability via exploit primitives is a recurring pattern

Weird machines: mostly harmless?
Core OS mechanisms are
unexpectedly Turing-complete as
attacker’s input-driven agents

• ELF loader/relocator is T.-c.

• PE and Mach-O are too  
(cf. LOCREATE, Uninformed 6:3)

• So is the DWARF exception handler
VM, helpfully linked into  
C/C++ programs

• So is the x86 MMU on its configs 
(GDT + IDT + TSS + PTEs)

USENIX WOOT 2013

USENIX WOOT 2013

USENIX WOOT 2011

Defining the common exploitability pattern

https://weirdmachines.gitlab.io/

A brief history:

Not so harmless: Spectre is more than a side-channel

• Modern CPU optimization layers
contain enough shared state and
logic to form a transient, mostly
unobservable emergent computing/
execution environment

• Interactions between different CPU
optimizations’ internal states can
serve as logical gates and circuits
adding up to a virtual CPU

• Programmed by seemingly meaningless

series of memory reads and writes

• Results are read off as timings of races

NDSS 2019

ASPLOS 2021, Distinguished paper

No longer just theory: iMessage exploitation
Enter the BlastDoor sandboxFrom single click to zero-click

WM in iMessage’s looping GIFs
• Pass received files with .gif extension to ImageIO library

• ImageIO ignores extension and guesses file type [exploit passes a PDF file]

• CoreGraphics PDF parser has an integer overflow, but no JavaScript to exploit
it [are we just going to safely crash? No.]

• …but it has JBIG2 decompression of glyphs, with XOR logic over memory
areas

• …which will apply out of buffer’s bounds, thanks to the overflow;

• this makes logical gates. Logical gates make a virtual machine as fast and
reliable as JavaScript!

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

Fully automated exploitation & patching?

Where else is hacker math
hiding?

“IRs are magic”
Intermediate Representations make analysis go

• GrSecurity/PaX made revolutionary Linux kernel hardening with compiler
plugins — operating over GCC IRs

Towers of Intermediate Representations
“IRs are useful. What’s an IR?”

• IRs are everywhere

• LLVM passes ~ IRs, MLIR

• Ghidra uses P-code

• Angr uses VEX

• Binary Ninja has 3 public IRs

• But what is an IR?

• Trail of Bits: ….. why only one?

Bugs span the semantic gap, and so should analyses!
Move up and down the tower of IRs as needed

• Buffer overflows: LLVM IR

• Adjacency: below LLVM IR

• Root causes like out-of-type
references: AST

• ToB solution: VAST/Multiplier

• Get all the IRs (as dialects of
MLIR)

• “Move up or down as needed”

A tower of IRs
A sequence of compatible, interoperating IRs

IR 3 (“High”, AST)

IR 1 (“Low”)

IR 0 (“Micro”)

IR 2 (“Medium”)

Type inference, type confusion

Abstraction-reusing exploit primitives

Low-level memory corruption,
SmthHammer, SmthSpectre

“For my analyses, I’d rather use DSLs”
Hard problems remain hard, but scalability increases

Prof. Xiangyu Zhang, Purdue U.
https://www.cs.purdue.edu/homes/xyzhang/

Lifting gets CVEs that fuzzing misses
50+ new CVEs in network protocols

Codebases chosen by
recent activity,
presence of fuzzing
harness

50+ new CVEs claimed

A tree of IRs? A lattice of IRs?
“A sufficiently lifted IR is indistinguishable from a DSL”

IR 3 (“High”, AST)

IR 1 (“Low”, pointers/aliasing)

IR 0 (“Micro”)

IR 1.1 (“Struct A”)

IR 2 (“Low”, heap adjacency)

IR 2.1 (“heap shape”)IR 1.2 (“Struct B”) IR 2.1 (“sessions”)

Reverse Engineering ~ IR tower/tree lifting?
Halvar’s “RE 2006: New Challenges Need Changing Tools” talk

https://thomasdullien.github.io/about/#2006

Bottom-up verification
Lifting from a sound foundation

Recompilable/patchable/verifiable IRs
Recompilable disassembly with proofs

Is this the year of the first-class*
IRs?

(*) Machine-readably defined as mathematical objects friendly to efficient algorithms

Right representation => Math => Algorithm => Tool => Pwnage

Hyperplanes
An experimental system for Interconnected IRs

Slides and examples to be posted be at https://hyperplanes.io/talks/h2hc/

Memorizer
Object-granular instrumentation of the Linux 6.6 kernels

• Stable, available with build instructions, manuals, and usage examples

• https://github.com/ITI/memorizer/

• Docs: https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-
dev/Documentation

• Builds for Qemu, x86-64, InitRAM

https://github.com/ITI/memorizer/
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation

Thank you

