
Sergey Bratus CyberTruck Challenge 2025

A few notes on hacker math
“Fundamental research challenges hidden in plain sight”

Sergey’s disclaimers

• Substantive: This is a personal perspective on other people’s amazing work.
All credit goes to them, not me.

• This is a tiny, biased sample of a great domain. Please tell me what I am
missing!

• Trivial: I am a former mathematician. I tend to see math everywhere :)

• Obligatory: The views, opinions and/or findings expressed are those of
the author and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

Disclaimer for DARPA-funded research

This research was developed with funding from the Defense
Advanced Research Projects Agency (DARPA). The views, opinions
and/or findings expressed are those of the author and should
not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

My DARPA programs
Safe Documents: Regain trust in electronic documents by creating
tools to build machine-readable unambiguous format definitions
and secure verified parsers

Assured Micropatching: Create tools for rapid binary patching of
legacy mission-critical systems, even where the original source code or
build process aren’t available

Verified Security & Performance Enhancement of Large Legacy
Software: Create practical tools for incremental enhancement of
software systems with new verified code that is both correct-by-
construction and safely composable with the rest of the system

My DARPA programs

Hardening Development Toolchains Against Emergent Execution
Engines:  
Develop practical tools to anticipate, isolate, and mitigate emergent
behaviors throughout the software lifecycle, to improve security
outcomes in software for complex integrated systems

Enhanced SBOM for Optimized Software Sustainment:  
Develop Enhanced Software Bill of Material (eSBOM) advanced
metadata technology to enable rapid triage-and-remediation of
vulnerabilities in software at scale.

E-BOSS

Hard hacking problems mean math
“Math pwns”

Hypothesis:

Biggest advances in hacking/cybersecurity come from nifty machine-readable
mathematical representations of data & code—which are friendly to efficient
algorithms.

Right representation => Math => Algorithm => Tool => Pwnage

Binary Diffing = Graph Isomorphism
Halvar Flake: BinDiff

• Diffing binaries is useful (e.g., for patches) but hard.

• Heuristics work, but only up to a point

• Insight: Graph isomorphism for basic block graphs!

• Basic blocks make graphs, matching graphs (“graph isomorphism”) is a hard
algorithmic problem, but has efficient subcases

• Cf. Joxean Koret’s Diaphora (https://github.com/joxeankoret/diaphora);
QuarksLab’s Diffing portal (https://diffing.quarkslab.com/)

• Also: Trail of Bits’ PolyFile and Graphtage for diffing and merging arbitrary binary
formats

Representation => algorithms => pwnage

(https://blog.trailofbits.com/2020/08/28/graphtage/)

Decompilation: graph structuring
Cristina Cifuentes, Mother of decompilation

• Going back from compiled binary is hard, heuristics only get so far

• Insight:

Decompilation, 30 years later
Still making progress: Hex-Rays, Binary Ninja, Ghidra, FoxDec, …

• More: https://mahaloz.re/dec-history-pt2

Reverse Engineering ~ Math
Halvar Flake’s “RE 2006: New Challenges Need Changing Tools”

https://thomasdullien.github.io/about/#2006

Modular framework for decompilation research
A new generation of tools for maintaining binaries

https://github.com/redballoonsecurity/ofrak

DISTRIBUTION A: Approved for public release; Distribution is unlimited.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 12

OFRAK cont.

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 13

OFRAK cont.

Action Menu

Resource Tree Pane Hex Pane

Minimap
Resource Details Pane

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 14

OFRAK Patch Maker

Source: Larson, August 2021

DISTRIBUTION A: Approved for public release; Distribution is unlimited. 15

Diagnostics adapter autotomy

Source: Larson, August 2021

Modular framework for binary research
A new generation of tools for maintaining binaries

• CodeCut: https://github.com/JHUAPL/CodeCut

• Codehawk (*): https://github.com/static-analysis-engineering/codehawk

• VIBES: https://github.com/draperlaboratory/VIBES

• Remill, Anvil, Relic LLVM lifters: https://github.com/lifting-bits/remill, https://
github.com/lifting-bits/anvill, https://github.com/lifting-bits/rellic

• PATE binary patch verifier: https://github.com/GaloisInc/pate

• MCTrace code release: https://github.com/GaloisInc/mctrace

• Binary analysis and rewriting tools used by PATE and MCTrace: https://github.com/
GaloisInc/macaw, reopt, what4, crucible, elf-edit, renovate, etc.

(*) See https://www.aarno-labs.com/blog/post/high-assurance-remediation-of-cve-2024-12248/

https://github.com/draperlaboratory/VIBES

“Weaponizing the Chomsky syntax hierarchy
Kaminsky/Sassaman/Patterson: Breaking X.509 => LangSec (*)

• Why so many “input validation/sanitization” bugs in everything?

• What are programmers doing that they can’t ever get right?

• Insight: Inputs have grammars. Complex grammars are hard to parse.
Ambiguous grammars are impossible to validate. Sanitization is an anti-
pattern.

• Many bugs uncovered, hardened/correct parsers built

Safe Documents: Safely intake electronic data by creating
tools to build machine-readable unambiguous format
definitions and secure verified parsers

(*) https://langsec.org/

“Recognizer doesn’t match
the input language”

https://stackoverflow.com/questions/1732348/regex-match-open-tags-except-xhtml-self-contained-tags

A LangSec view of data languages

Complexity class Examples
Model needed to correctly

parse/accept
 Complexity to verify
implementation Security

Recursively
enumerable

Javascript, Flash,  
“benign programs”* Turing machine In general, impossible

Gift to
attackers

Recursive Some limited programs Always-stopping  
Turing machines In general, impossible

Context-sensitive
Document & image formats,

PDF, MPEG, DNS, SMB,

 ASN.1, X.509, actual XML

Linear-bounded automata
(random-access memory)

Likely not safe or
securable in general

Mildly context-
sensitive

Subsets of document &  
protocol formats

Embedded pushdown
automata

“stack of stacks”
“Research needed”

Context-free HTML*, JSON*, XML* Pushdown automata 
”stacks”

“Feasible, with
challenges”

CALC-regular 
“regular+length fields” Many TCP/IP* protocols Finite state machines with

accumulators Feasible Safe if
done

rightRegular IPv4 Finite state machines Known & efficient

A LangSec view of data languages

Complexity class Examples
Model needed to correctly

parse/accept
 Complexity to verify
implementation Security

Recursively
enumerable

Javascript, Flash,  
“benign programs”* Turing machine In general, impossible

Gift to
attackers

Recursive Some limited programs Always-stopping  
Turing machines In general, impossible

Context-sensitive
Document & image formats,

PDF, MPEG, DNS, SMB,

 ASN.1, X.509, actual XML

Linear-bounded automata
(random-access memory)

Likely not safe or
securable in general

Mildly context-
sensitive

Subsets of document &
protocol formats

Embedded pushdown
automata

“stack of stacks”
“Research needed”

Context-free HTML*, JSON*, XML* Pushdown automata 
”stacks”

“Feasible, with
challenges”

CALC-regular 
“regular+length fields” Many TCP/IP* protocols Finite state machines with

accumulators Feasible Safe if
done

rightRegular IPv4 Finite state machines Known & efficient

Good news: this work has started!

“Demystifying PDF through a machine-readable definition,” Peter Wyatt, CTO of PDF Association
“Building a File Observatory for Secure Parser Development,” Tim Allison et al., NASA Jet Propulsion Lab

"Accessible Formal Methods for Verified Parser Development,” Letitia Li et al., BAE Systems 
“RL-GRIT: Reinforcement Learning for Grammar Inference," Walt Woods et al., Galois Inc.

Data Definition Languages (DDLs):

• First ever machine-readable object model for PDF 1.6 through 2.0  
 500+ objects, 3,500+ keys, 5000 rules, 40 relationship predicate types

• Exposed multiple bugs in existing validators and parsers, 600+ deviations

• 100+ disambiguating candidate edits proposed and adopted into ISO PDF 2.0
standard (32000-2:2020, 1000 pages, 79 normative references)

• First ever Internet-scale observatory for a major
document format, global coverage

• Based on Apache CommonCrawl, AWS

• Automatic identification of malformations, with
attribution and estimated impact

• https://digitalcorpora.org/corpora/file-corpora/cc-
main-2021-31-pdf-untruncated/ (sponsored by AWS)

A few resources by

https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/
https://digitalcorpora.org/corpora/file-corpora/cc-main-2021-31-pdf-untruncated/

Exploitation = proofs + programming
Exploits are proofs, exploitation is verification

“Verification .. becomes finding a program path [with] the exploitability property”

Automated Exploitation Grand Challenge
Julien Vanegue’s Challenge Problems

https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

https://openwall.info/wiki/_media/people/jvanegue/files/aegc_vanegue.pdf

What are ‘exploitability properties’?
Hypothesis: primitives add up to generic programmability

In 7-8 more years, we will know this as
Return Oriented Programming (ROP),  
Jump Oriented Programming (JOP),  
and many other kinds of *OP

Gerardo Richarte (gera),  
https://seclists.org/bugtraq/2000/Nov/32

Exploitation = programming + proofs
General-purpose programmability via exploit primitives is a recurring pattern

Weird machines: mostly harmless?
Core OS mechanisms are
unexpectedly Turing-complete as
attacker’s input-driven agents

• ELF loader/relocator is T.-c.

• PE and Mach-O are too  
(cf. LOCREATE, Uninformed 6:3)

• So is the DWARF exception handler
VM, helpfully linked into  
C/C++ programs

• So is the x86 MMU on its configs 
(GDT + IDT + TSS + PTEs)

USENIX WOOT 2013

USENIX WOOT 2013

USENIX WOOT 2011

Defining the common exploitability pattern

https://weirdmachines.gitlab.io/

A brief history:

Not so harmless: Spectre is more than a side-channel

• Modern CPU optimization layers
contain enough shared state and
logic to form a transient, mostly
unobservable emergent computing/
execution environment

• Interactions between different CPU
optimizations’ internal states can
serve as logical gates and circuits
adding up to a virtual CPU

• Programmed by seemingly meaningless

series of memory reads and writes

• Results are read off as timings of races

NDSS 2019

ASPLOS 2021, Distinguished paper

No longer just theory: iMessage exploitation
Enter the BlastDoor sandboxFrom single click to zero-click

WM in iMessage’s looping GIFs
• Pass received files with .gif extension to ImageIO library

• ImageIO ignores extension and guesses file type [exploit passes a PDF file]

• CoreGraphics PDF parser has an integer overflow, but no JavaScript to exploit
it [are we just going to safely crash? No.]

• …but it has JBIG2 decompression of glyphs, with XOR logic over memory
areas

• …which will apply out of buffer’s bounds, thanks to the overflow;

• this makes logical gates. Logical gates make a virtual machine as fast and
reliable as JavaScript!

https://googleprojectzero.blogspot.com/2021/12/a-deep-dive-into-nso-zero-click.html

Fully automated exploitation & patching?

https://aicyberchallenge.com/

Where else is hacker math
hiding?

“IRs are magic”
Intermediate Representations make analysis go

• GrSecurity/PaX made revolutionary Linux kernel hardening with compiler
plugins — operating over GCC IRs https://grsecurity.net/papers

Towers of Intermediate Representations
“IRs are useful. What’s an IR?”

• IRs are everywhere

• LLVM passes ~ IRs, MLIR

• Ghidra uses P-code

• Angr uses VEX

• Binary Ninja has 3 public IRs

• But what is an IR?

• Trail of Bits: Why use only one
IR at a time?

https://blog.trailofbits.com/2023/06/15/finding-bugs-with-mlir-and-vast/

Bugs span the semantic gap, and so should analyses!
Move up and down the tower of IRs as needed

• Buffer overflows: at LLVM IR

• Adjacency: below LLVM IR

• Out-of-type references: AST

• ToB solution: VAST/Multiplier

• Get all the IRs (as dialects of
MLIR)

• “Move up or down as needed”

A tower of IRs
A sequence of compatible, interoperating IRs

IR 3 (“High”, AST)

IR 1 (“Low”)

IR 0 (“Micro”)

IR 2 (“Medium”)

Type inference, type confusion

Abstraction-reusing exploit primitives

Low-level memory corruption,

SmthHammer, SmthSpectre

“For my analyses, I’d rather use DSLs”
Hard problems remain hard, but scalability increases

Prof. Xiangyu Zhang, Purdue U.

https://www.cs.purdue.edu/homes/xyzhang/

Lifting gets CVEs that fuzzing misses
50+ new CVEs in network protocols

Codebases chosen by
recent activity,
presence of fuzzing
harness

50+ new CVEs claimed

A tree of IRs? A lattice of IRs?
“A sufficiently lifted IR is indistinguishable from a DSL”

IR 3 (“High”, AST)

IR 1 (“Low”, pointers/aliasing)

IR 0 (“Micro”)

IR 1.1 (“Struct A”)

IR 2 (“Low”, heap adjacency)

IR 2.1 (“heap shape”)IR 1.2 (“Struct B”) IR 2.1 (“sessions”)

Reverse Engineering ~ IR tower/tree lifting?
Halvar’s “RE 2006: New Challenges Need Changing Tools” talk

https://thomasdullien.github.io/about/#2006

Bottom-up verification
Lifting from a sound foundation

Recompilable/patchable/verifiable IRs
Recompilable disassembly with proofs

Is this the year of the first-class*
IRs?

(*) Machine-readably defined as mathematical objects friendly to efficient algorithms

Right representation => Math => Algorithm => Tool => Pwnage

Memorizer
Object-granular instrumentation of the Linux 6.6 kernels

• Original by Nathan Dautenhahn at Rice U., currently developed at UIUC

• Stable, available with build instructions, manuals, and usage examples

• https://github.com/ITI/memorizer/

• Docs: https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-
dev/Documentation

• Builds for Qemu, x86-64, InitRAM

https://github.com/ITI/memorizer/
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation
https://github.com/ITI/memorizer/tree/linux-6.6.y-memorizer-dev/Documentation

How can we use it to improve
software development,
maintenance and sustainment?

48

Awesome:

• High-level programming languages

• Automating software composition (linkers)

• Large reusable code libraries

And yet:

• Source -> compiler -> linker -> unmaintainable binary

• Binaries aren’t meant to be incrementally updated

• “Tear down & rebuild the house to remodel a room”

We are still living out the 1960s software development revolution

https://en.wikipedia.org/wiki/Grace_Hopper

49

New tools to maintain software post-compilation & post-linking

Advanced metadata is generated at each stage of the build process, enables maintenance of binaries

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 50

E-BOSS: enhance SBOMs with flow metadata to trace flaws to triggers

• Keep advanced metadata in addition to symbols to effectively trace back flaw evidence to triggers

• Enhance SBOMs with new types of rich metadata, enabling cyber reasoning for triage and remediation

• Remediate with eSBOMs: Recover paths and triggers to crash site from crash snapshots (“crash dumps”), remediate by blocking
triggers once recovered

• Block triggers and flows leading to quick remediation

compiler

loader

re-
compiler

re-linker

.o

source

m

e

m

o

r

y

linker

patcher

Resolved
dependencie
s

metadata

Data flow 
metadata

Memory
allocation

metadata

= flow metadata = new algorithms and cyber reasoning
tools = recovered triggers

Cyber reasoning tools 
enabled by new metadata

Existing build tools  
 to be extended crash info…extended and combined

Rapid 
Triage

Remediation

Trigger 
Recovery

Feedback for maintenance

Triggers

51

Thank you!

Thank you

